Долгие годы неудач не сломили Перутца. Он не отступил. Стало ясно, что нужно менять тактику исследований. Обычные методы рентгеноструктурной дифракции оказались недостаточными для расшифровки чрезвычайно сложной молекулы гемоглобина.
В то время руководителем Кавендишской лаборатории был У. Л. Брэгг, нобелевский лауреат, один из основателей рентгеноструктурного анализа. Естественно, что он был живо заинтересован в установлении структур белковых молекул — сложнейших в природе. Он постоянно наблюдал за ходом экспериментов и частенько захаживал в лабораторию Перутца, чтобы взглянуть на свежие рентгенограммы: Потом сэр Брэгг отправлялся домой и на досуге долго размышлял над полученными результатами.
Изготовление рентгенограммы кристалла () — лишь половина дела. Далее пятна на снимке, соответствующие определённым структурным центрам, с помощью специального оптического прибора преобразуют в ряд дифракционных полос. Затем их совмещают, и только тогда получают нечто вроде контурных карт, по которым определяют строение вещёства.
Чтобы добиться изображения, отражающего реальную структуру, нужно правильно расположить набор дифракционных полос по отношению к определённой, но произвольно выбранной исходной точке. Получая такой набор, довольно легко определить амплитуду волны. Но не её фазу! Здесь-то «зарыта собака» всей многолетней проблемы: изображений могло получиться бесчисленное множество— в соответствии с выбранной фазой для каждого ряда полос. Попробуй, угадай, какое из них правильное.
Вот как сам Перутц писал про это: «Сама по себе рентгенограмма говорит нам только об амплитудах, но ничего не говорит о фазах полос, которые даёт каждая пара пятен; таким образом, половина информации, необходимой для получения изображения, отсутствует. Из-за этого рентгенограмма кристалла оказывается иероглифом без ключа для его расшифровки. Терпеливо измеряя в течение ряда лет интенсивность нескольких тысяч пятен на рентгенограммах гемоглобина, я испытывал танталовы муки, которые может понять только исследователь, заполучивший коллекцию табличек с надписями на неизвестном языке. ...Мы с Брэггом пытались разработать методы расшифровки фаз, но не добились большого успеха».
«Золотой» миоглобин
Заветный ключик был подобран только в 1953 году. Именно тогда Перутца осенила блестящая и, в общем-то, простая идея. Он подумал о том, что не худо было бы воспользоваться методом, разработанным для расшифровки структур простых кристаллов. В этом случае к молекуле «цепляли» атомы каких-нибудь тяжёлых металлов, существенным образом менявших интенсивность дифракционных полос. Сравнивая амплитуды, которые давали молекулы с атомами металлов и без них, можно было установить разницу. Определение по ней величины фазы представлялось, как говорится, делом техники. В качестве тяжёлого металла выбрали ртуть.
«...Пока я проявлял свою первую рентгенограмму гемоглобина с введённой в его молекулу ртутью,— рассказывал Перутц,— я то предавался оптимистическим надеждам на немедленный успех, то впадал в отчаяние, перебирая в уме все возможные причины неудачи, наконец на бумаге появились дифракционные пятна — точно в тех же местах, что и в случае свободного от ртути гемоглобина, однако интенсивность их была несколько иная — что я и ожидал. Ликуя, я ворвался в комнату Брэгга, считая, что выяснение структуры гемоглобина и многих других белков уже у нас в руках. Брэгг разделил мой энтузиазм. Никто из нас в тот момент не мог представить себе те огромные технические трудности, которые задержат нас ещё на пять лет».
Дело заключалось в чрезвычайно трудоёмких вычислениях. Судите сами. Число пятен на рентгенограммах может достигать сотен тысяч. Для каждого нужно измерить интенсивность с атомами ртути и без них, затем внести поправки на различные геометрические факторы и потом, накладывая друг на друга десятки тысяч дифракционных полос, получить искомую структуру. Таким образом, приходилось оперировать многими миллионами чисел. Конечно же, без помощи ЭВМ эту работу выполнить было невозможно. И даже с её применением громоздкие расчёты заняли ещё несколько лет.
Перутц являл собой пример истинного исследователя, который ни под каким видом не сворачивал с пути и твёрдо, пусть чуть ли не ползком, продвигался к намеченной цели.
Заметим попутно, что в то же самое время, в: той же самой Кавендишской лаборатории английский физик Фрэнсис Крик, работавший над докторской диссертацией «Исследования поведения кристаллов гемоглобина в растворах солей различной плотности», и американский генетик Джеймс Уотсон, приехавший на стажировку, чтобы заняться миоглобином, буквально за два года теоретически обосновали и разработали структуру знаменитой двойной спирали — молекулы ДНК- И, как они сами говорили всерьёз, дожидались за это Нобелевской премии.