Выбрать главу

Активность кальция как биометалла зависит прежде всего от механизма его прохождения через мембраны. И здесь мы снова должны прибегнуть к той модели, которая нам известна как насос. Принцип действия такого насоса аналогичен натриевому. Основные его «детали» — это фермент и ионный канал. В качестве первого выступает АТФ-аза с молекулярной массой 100 тыс, каналы же образуются сравнительно небольшими молекулами липо-протеина с массой 12 тыс.

Поддерживая определённую концентрацию ионов кальция, такой насос выполняет роль клеточного регулятора. Все здесь как будто бы ясно, однако невероятная универсальность кальция, влияющего практически на все внутриклеточные процессы, как-то не укладывалась ни в какие рамки. Оказалось, что в клетках, по крайней мере имеющих ядро, содержится особый белок — калмодулин, который способен связываться с ионами кальция при повышении их концентрации до определённого уровня. Вот такой весьма активный комплекс (а не сам кальций) и взаимодействует с разными ферментами, активируя их. По-видимому, калмодулин является регулятором концентрации ионов, запуская и выключая кальциевый насос.

А что если именно в работе насосов-невидимок и кроется загадка роковой зависимости сердечных заболеваний от жёсткости питьевой воды? Ведь сердце — это прежде всего мышцы, работа которых, как и всех других мышц, зависит от нормального поступления ионов кальция. И если их недостаточно, то развивается недуг.

Вот так и для работы любой микроскопической клетки живого организма, и для построения его опорной конструкции — скелета — везде необходим работяга кальций, самый универсальный металл из всех металлов жизни.

Вместо заключения

Замечательный советский биохимик академик В. А. Энгельгардт заметил: «Важнейшие функции и характерные специфические черты живых образований — наследственность, движение, функции органов чувств, энергетика, природа заболеваний, явления иммунитета...» Как мы уже успели узнать, любая из этих перечисленных характеристик живого так или иначе связана с присутствием в организме металлов.

Мы ограничились рассказом только о десяти металлах, биологическое действие которых пока доказано наиболее полно. Но, конечно же, этим числом не исчерпывается содержание металлов в организме. Их там гораздо больше. Достаточно сказать, что в живых существах обнаружено так же присутствие хрома, никеля, ванадия, стронция, олова, свинца, ртути, мышьяка, алюминия и даже таких экзотических металлов, как бериллий, цезий, рубидий, не говоря уж о серебре и золоте. Специалисты не исключают, что в нашем организме имеются все металлы менделеевской таблицы. Однако биологическая роль далеко не каждого из них ясна. Так или иначе, но содержание химических элементов в живых организмах отражает состав окружающего нас мира.

И все же... И все же совершенно неясно, зачем нам, например, такой редкостный и радиоактивный металл, как уран? Наш старый знакомый Гомо Кондитионалис содержит его в количестве 0,00009 грамма. Разумеется, это чрезвычайно малая величина, но пренебречь ею, видимо, нельзя. В последнее время некоторые исследователи, изучая накопление урана в живом вещёстве прошлых геологических эпох, пришли к весьма любопытному выводу — этот металл в значительной мере мог изменить ход биологической эволюции.

А для чего нам свинец, олово, ртуть или, скажем, золото? Что это — случайные примеси, попавшие в наш организм из посуды, столовых приборов, консервных банок, зубных коронок и пломб или даже благодаря... разбитым градусникам?