Лев Александрович Николаев
Металлы в живых организмах
Введение
Роль металлов в развитии и становлении технической культуры человечества исключительно велика. Твердость, пластичность, ковкость сделали их незаменимым материалом для изготовления орудий труда и производства. Исторически сложившиеся названия "бронзовый век", "железный век" говорят о сильном влиянии металлов и их сплавов на все направления развития производства. Позже были открыты электрические и магнитные свойства металлов и наступил "век электричества", а затем — уже в наше время — "век электроники". Близкие перспективы электроники — это полная автоматизация производства, создание "мыслящих" машин, роботов, успешное завоевание космоса.
И в нашей повседневной практике мы ежеминутно встречаемся с металлами. Мы нажимаем кнопку выключателя, и электроны начинают бег по металлическим проводникам, попадая в металлические детали лампочки, или плитки, или электромотора. Электроны пришли в движение потому, что где-то на электростанции работает генератор, в котором металлический ротор вращается в магнитном поле, усиленном за счет удивительных свойств металла — железа. Выглянув на улицу, мы видим сотни автомашин, каждая из которых сделана из металла. Мы видим стальные мосты, стальные рельсы, мачты электропередач, трамваи и, наконец, самолеты, в конструкциях которых использованы алюминий, железо, медь, хром, ванадий, титан... Везде металлы!..
Ну а в нас самих содержатся ли они? Есть ли металлы в клетках растений, животных, человека? Конечно, речь идет не о металлах в свободном состоянии, но ведь металлы легко переходят в ионное состояние, образуя соли. Есть ли они в клетках? Если да, то зачем и что они там делают? Случайные ли это примеси или необходимые составные части живого вещества?
В этой книге мы и попробуем ответить на поставленные вопросы. Бионеорганическая химия, к области которой они относятся, — молодая наука. Она еще далеко не все знает о биологической роли металлов. Но все-таки знает многое.
Глава 1. Почему организмы иногда называют биологическими машинами?
Функции тех устройств, которые называют машинами при всем их разнообразии, связаны с целенаправленным использованием энергии. Результат деятельности машин — либо перенос массы, либо получение продукции, отличающейся от исходного сырья.
Мы можем заметить, что превращения различных форм энергии также характерны для машин: электрическая энергия в электромоторе превращается в механическую энергию движения (вращения); химическая энергия реакций окисления-восстановления в гальванических элементах и аккумуляторах превращается в электрическую, а эта последняя в механическую (в электромобилях) или теплоту; реакция горения топлива в паровой машине или двигателе внутреннего сгорания переходит в механическую энергию и т. д.
Происходит ли что-либо подобное в клетках и соответственно в организме? На первый взгляд аналогия между клеткой и машиной кажется весьма сомнительной. Жесткие металлические конструкции, большие скорости движения отдельных частей, провода, болты, гайки, тяжелые станины — как все это не похоже на нежные комочки белка, составляющие содержимое хрупких клеток! Можно ли говорить о сходстве столь различающихся объектов? Однако успехи молекулярной биологии с каждым днем все больше убеждают нас в том, что аналогия между клетками и машинами не поверхностна, а выражает глубокую природную закономерность.
Сравним типичные особенности работы машин в технике и "машин" в биологии. Технические машины требуют энергии, без притока энергии (механической, электрической, теплоты и т. п.) они работать не могут. Клетки и клеточные системы, т. е. организмы, также нуждаются в энергии. Использовать теплоту для прямого ее превращения в работу клетка не способна — для этого надо, чтобы существовала хотя бы небольшая разность температур или давлений, а все части клетки находятся практически при одной и той же температуре и под одинаковым давлением (в термодинамике такие условия называются изобарно-изотермическими). Основной источник энергии для живых систем заключается в пищевых веществах — клетки пользуются химической энергией, запасенной в углеводах, жирах или белках пищи. Так, процесс брожения, протекающий в бескислородной среде и схематически выраженный уравнением
Процесс брожения, протекающий в бескислородной среде, доставляющий энергию анаэробным микроорганизмам
доставляет энергию так называемым анаэробным микроорганизмам, живущим в бескислородной среде (анаэроб — "живущий без воздуха").