Чанс, исследовавший механизм действия пероксидазы, выделенный из корня хрена (в этом растении содержание пероксидазы особенно велико), пришел к выводу, что фермент образует с пероксидом водорода три соединения, проявляя в этом отношении некоторое сходство с каталазой. Одно из этих соединений зеленое и два — красных. Зеленое очень непрочно и легко переходит в одно из красных (другое получается при большом избытке пероксида). Реакция окисления соединения (например, аскорбиновой кислоты), которое мы условно обозначим АН2, заключается в отнятии от АН2 водорода, соединяющегося с кислородом пероксида. Схема реакции с участием пероксидазы, которую мы обозначим Пер -ОН, такова:
Схема реакции с участием пероксидазы
Некоторые исследователи считают, что в пероксидазе во время этой реакции железо переходит в высшие степени окисления (+4), но окончательно этот вопрос еще нельзя признать решенным.
Модели ферментов. Большой интерес вызывает вопрос о возможности создания катализаторов, менее сложных по составу, чем ферменты, но вместе с тем столь же активных и избирательно действующих. Речь, следовательно, идет о получении моделей ферментов на основе сравнительно простых систем. Еще в начале XX в. Г. Бредиг обнаружил, что мелкораздробленные металлы (например, платина) проявляют способность сильно ускорять некоторые реакции, в частности разложение пероксида водорода. Такие "металлические модели", конечно, мало походили на белковые катализаторы, но все же стало ясно, что высокая каталитическая активность не является свойством, присущим только ферментам.
В 50-х г. Л. А. Николаев исследовал "медные модели" фермента каталазы, состоящие из комплексных соединений меди, и доказал, что ион меди, окруженный молекулами аммиака или аминогруппами, например в комплексах:
Ион меди, окруженный молекулами аммиака или аминогруппами
проявляет очень большую каталитическую активность в реакции разложения пероксида водорода. Позже были изучены реакции гидролиза (Р. Густавсон и С. Чибрик), ряд окислительных реакций (А. П. Пурмаль и др.), исследован механизм процессов катализа (А. П. Пурмаль, А. Я. Сычев и др.) и установлено, что многие комплексные соединения металлов вполне могут рассматриваться как модели активных групп металлосодержащих ферментов.
В настоящее время ведутся работы по изучению сочетаний комплекс металла — высокомолекулярный носитель; такая система уже совсем близка к природным ферментам. С другой стороны, фиксируя природный фермент на носителе, например на силикагеле, в приборе, называемом хроматографической колонкой, можно повысить его устойчивость и сделать более удобным использование фермента в производственных условиях. Такие "иммобилизованные" ферменты (т. е. зафиксированные на носителе) находят все большее применение в технологии производства пищевых продуктов.
Глава 5. Активаторы и киназы
Мы переходим теперь к тем случаям участия металлов в действии ферментов, когда ион металла, не образуя прочных комплексов, тем не менее сильно повышает активность фермента, иначе говоря, играет роль активатора.
Ион металла, белок фермента и превращаемая молекула того или иного соединения (субстрат) в процессе реакции образуют различные промежуточные структуры. На рисунке 4 показаны возможные сочетания иона металла (М), субстрата и белка-фермента (Ф). Субстрат играет роль лиганда и обозначен L.
Рис. 4. Возможные сочетания белка (L), иона металла (М) и фермента (Ф)
Ион металла может действовать на лиганд, уже соединенный с белком, может располагаться между ними ("мостик"), может вступать в соединение с другой точкой белковой молекулы. При этом ион металла выполняет в общем случае сразу несколько функций: он поддерживает лиганд (субстрат) и белок в определенном пространственном положении, удобном для реакции, оказывает на связанные с ним молекулы или группы атомов поляризующее действие, смещая в них электроны, и, наконец, он может действовать как катализатор. Различить эти отдельные функции в общем эффекте повышения активности фермента очень трудно, и чаще всего механизм работы активаторов остается спорным.
Доказано, что ионы металлов делают более устойчивой ту форму белковой молекулы фермента (ее активной области), которая проявляет наибольшую каталитическую активность.
Важным ферментом, содержащим ион металла, а именно цинка, является карбоксипептидаза. Карбоксипептидаза вместе с другими ферментами, катализирующими гидролиз, разлагает молекулу пищевого белка на отдельные аминокислоты, из которых потом клетка построит нужные ей белки. Специальность карбоксипептидазы — отщепление аминокислотных остатков от того конца полипептидной цепочки белка, на котором находится карбоксильная группа, например: