Эти важные факты говорят о том, что структурная организация: возникновение надмолекулярных структур — митохондрий, хлоропластов — есть необходимое условие сопряжения реакций, доставляющих энергию, и реакций, поглощающих ее. Так в природе осуществляется переход от процессов на молекулярном уровне к процессам в макромолекулярных организациях — клетках и многоклеточных системах, причем и само существование таких систем поддерживается энергетическим сопряжением.
Все эти структуры образовались постепенно, и хлорофилл не сразу появился на Земле.
В осадочных породах, начиная с кембрийского, были обнаружены порфирины, и, как думают ученые, именно они являются остатками древних носителей хлорофилла. Некоторые ученые считают, что хлорофилл совершает свою работу в живых системах вот уже 550 млн. лет.
Хлорофилл и сам был рожден светом. Возможно, как считает М. Кальвин, солнечная радиация, действуя на воду и углекислый газ, привела сначала к появлению муравьиной и щавелевой кислот. Щавелевая кислота Н2С2О4 содержит два атома углерода. При облучении таких двухуглеродных молекул часто образуются четырехуглеродные молекулы; в частности, четыре атома углерода содержатся в кислоте С4Н6O4, называемой янтарной. С другой стороны, прямыми опытами Бахадура, А. Г. Пасынского с сотрудниками и других ученых доказано, что ультрафиолетовая радиация, действуя на растворы нитратов и формальдегида, в которых содержатся соли железа, вызывает появление в растворах аминокислот; аминокислоты могут возникнуть и при действии электрических разрядов на смесь азота, углекислого газа и паров воды. Из янтарной кислоты и аминокислоты глицина, NH2CH2COOH, по-видимому, и образовались порфирины.
Они и были (по А. А. Красновскому) первичными аппаратами для использования энергии света. У наиболее древних видов бактерий — автотрофов — обнаружено наличие свободных порфиринов. Бактерии действовали в лишенной кислорода восстановительной атмосфере, которая была характерна для ранних периодов истории Земли, и содержали восстановленную форму порфирина. Однако свободные порфирины, в силу особенностей их спектра поглощения, не могут обеспечить достаточно полного использования видимой части солнечного излучения. Постепенно химическая эволюция усовершенствовала аппарат и привела к образованию хлорофилла; внедрение магния в структуру порфирина вызвало повышение активности, и, кроме того, магний укрепил связи хлорофилла с белком[8].
Фотосинтез в той его форме, которая приобрела особенно большое значение на Земле, совершается в зеленых частях растений и в водорослях. Трудно представить колоссальные масштабы деятельности зеленых водорослей, плавающих в морях и океанах. За один год они выделяют в атмосферу Земли 3,6*10 т кислорода. Это составляет около 90% всего кислорода, поступающего в атмосферу из океана и с поверхности листьев наземных растений. Следовательно, именно водоросли являются основным поставщиком кислорода. Именно они создают ту часть атмосферы, которая необходима для нашего существования. Наша жизнь неразрывно связана с "дыханием океана" и непрерывной деятельностью микроскопических носителей хлорофилла. К. А. Тимирязев в книге "Солнце, жизнь и хлорофилл" изложил результаты своих фундаментальных исследований в области фотосинтеза и указал, что фотосинтез — это процесс, от которого зависят все проявления жизни на нашей планете.
Развитие фотосинтетических аппаратов знаменовало собой начало совершенно нового периода в эволюции форм жизни на Земле. Появились новые виды живых существ, резко изменились условия питания, состав атмосферы — началось обогащение ее кислородом. Синтез органических веществ в растениях и водорослях обеспечил пищей гетеротрофные[9] организмы; из остатков растений под влиянием химических и биологических факторов начали образовываться массы ископаемых углей. Накопления таких отложений, как нефть и сланцы, — это тоже результат фотосинтетической деятельности.
Пожалуй, невозможно найти другой биохимический аппарат, который мог бы с таким совершенством использовать энергию излучения для химических целей, как это делает хлорофилл. Хлорофилл действительно является звеном между энергией Солнца и жизнью на Земле; этим определяется исключительная роль ионов магния в развитии форм жизни.
8
Некоторые ученые (Гранин) считают, что сходство гема и хлорофилла обусловлено тем, что оба вещества при биосинтезе сначала образуются одинаковым путем, и лишь на более поздних стадиях их синтез идет по-разному; различают "железную" и "магниевую" ветви: образование с одной стороны гема, с другой — хлорофилла.
9
Способные жить за счет питания готовыми органическими соединениями; отличаются от автотрофов — способных первично синтезировать необходимые им вещества.