По мере того как открывались все новые и новые астероиды и вычислялись их орбиты, появилась возможность исследовать структурные детали пояса астероидов. Американский астроном Дэниэл Кирквуд в 1866 году описал «примечательные разрывы» – замеченные им концентрические зоны, в которых астероиды не появлялись. Эти промежутки были в его честь названы «люками Кирквуда». Таким образом, пояс астероидов был не просто хаотическим кольцом обломков, обращающихся вокруг Солнца: он состоял из ряда концентрических колец. Кирквуд правильно объяснил природу этих промежутков гравитационными взаимодействиями астероидов с крупнейшей планетой Солнечной системы – Юпитером. В процессе сложного «танца» астероидов вокруг Солнца в сочетании с «танцами» планет, определенные области пояса оказываются в «орбитальном резонансе» с Юпитером. Согласно открытому Ньютоном закону всемирного тяготения, скорость, с которой движется по своей орбите вокруг Солнца планета, астероид или комета, зависит от расстояния между этим небесным телом и Солнцем. Чем дальше от Солнца находится орбита, тем медленнее движется по ней тело. Орбитальные резонансы в поясе астероидов возникают, когда отношение периодов обращения астероида и Юпитера может быть выражено целым числом.
Представьте себе Солнечную систему в виде циферблата, в центре которого находится Солнце, а планеты и астероиды обращаются вокруг него на разных расстояниях. И пусть орбита Юпитера очерчивает внешний край нашего циферблата. Теперь представьте астероид, орбита которого пролегает ближе к центру циферблата (то есть ближе к Солнцу): этот астероид будет совершать один оборот быстрее, чем Юпитер, расположенный дальше. Допустим, мы установили, что этот астероид совершает оборот вокруг центра часов (то есть один оборот по орбите вокруг Солнца) вдвое быстрее Юпитера. За один оборот Юпитера происходит два оборота астероида. Эта ситуация называется орбитальным резонансом 2:1. Тогда на каждом втором орбитальном обороте астероида и Юпитер, и астероид будут на циферблате одновременно на двенадцати часах. В этом положении мощное гравитационное поле Юпитера будет слегка подтаскивать астероид к планете, из-за чего его орбита будет становиться более эллиптической. За сотни тысяч оборотов влияние этих малых гравитационных толчков на двенадцати часах будет накапливаться, и резонанс выбросит астероид на хаотическую орбиту. Подобные резонансы (и, следовательно, разрывы в положениях орбит) образуются при отношениях периодов обращения 3:1, 5:2, 7:2 и 7:3.
Хаотические орбиты могут привести астероид в безопасное положение в более гравитационно устойчивой части пояса. А некоторые астероиды могут быть вообще выброшены из пояса – либо в сторону Солнца, во внутреннюю часть Солнечной системы, либо вовне, в ее ледяные периферийные области. В результате изменения орбит между астероидами могут происходить и катастрофические столкновения с образованием роев мелких обломков – «шрапнели». Но какова бы ни была их дальнейшая судьба, все астероиды, обнаруживаемые внутри областей орбитального резонанса, обречены на то, чтобы быстро эту область покинуть. Поэтому в поясе и образуются разрывы, пустоты, в которых астероидов почти не встречается.
Орбитальные резонансы, создающие пустоты в астероидном поясе, обеспечивают условия, при которых астероиды и их мелкие обломки могут сталкиваться и уходить в другие области Солнечной системы. И если в результате этих возмущений орбита астероида или обломка пересекает орбиту Земли, появляется потенциальная возможность захвата этого тела Землей при ее движении вокруг Солнца. Ученые XIX века не сбрасывали со счетов заманчивое предположение, что метеориты могут оказаться именно такими фрагментами пояса астероидов.
Пока астрономы глядели вверх в свои телескопы, геологи смотрели вниз: в окуляры микроскопов. В середине XIX века французский геолог Адольф Буасс думал, что он нашел доказательство происхождения метеоритов из обломков планеты, что соответствовало астероидной гипотезе. Он расположил данные об упавших метеоритах в порядке убывания их плотности, так, что получившаяся последовательность напоминала внутреннее строение планеты, похожей на Землю: железные метеориты в центре, представляющем собой металлическое ядро, выше – гибридные железокаменные, а затем каменные метеориты, соответствующие внешней каменной мантии и коре. Сходство состава метеоритов с составом слоев большой планеты было веским физическим доказательством того, что астероиды действительно являются частями фрагментированной планеты и что метеориты происходят из них.