Выбрать главу

152

Специалисты высказываются, что к технологиям, способствующим резкому увеличению вычислительной мощности компьютеров, относятся молекулярные или атомные технологии; различные биологические материалы и ДНК; трехмерные технологии; технологии, основанные на фотонах вместо электронов; квантовые технологии, в которых используются элементарные частицы. Делается прогноз, что в XXI в. вычислительная техника будет сопряжена не только со средствами связи и машиностроением, но и с биологическими процессами. Тогда возникнет перспектива создания разумных машин, «живых компьютеров» и человеко-машинных гибридов.

Сегодня одно из новейших направлений - попытки создания нейрокомпьютеров. Их устройство (микросхемы) близки по строению нейронным сетям человеческого мозга. Благодаря этому нейрокомпьютер способен к обучению. Он может использоваться в решении задач без четкого алгоритма и справляется с огромными потоками информации. Уже сегодня подобные компьютеры применяются на финансовых биржах, предсказывая колебания курсов валют и акций. Через десять лет, по словам Билла Гейтса, доля таких компьютеров на рынке вырастет до девяноста процентов. Интересно отметить, что в создание подобных компьютеров включились российские разработчики (фирма НТЦ «Модуль» создала нейропро-цессор NM 6403. В печати сообщается, что этот процессор удостоен золотой медали на Всемирном салоне изобретений «Брюссель-Эврика».

Предпосылки новой научной революции в России

Новейшая революция - это событие мировой науки. В российской науке она свершается в той мере, в какой происходит включение российских ученых в этот всемирный процесс. При этом необходимо учитывать своеобразное разделение научного труда, которое существует в мировом сообществе ученых. Российская наука не охватывала и не может охватить все сегменты бурно развивающейся мировой науки; она может участвовать лишь в разработке определенных векторов научного прогресса на этапе научных революций. Выше было установлено, что научная революция идет в глубоких пластах познания и сопряжена с фундаментальными сдвигами в научной идеологии и в способах воплощения науки в социальную, экономическую, технологическую действительность. Потенциал российской науки позволяет ей реально участвовать в разработке принципиальных проблем современного развития мировой науки. Для этого есть множество предпосылок, но существуют, конечно, и серьезные трудности, о чем стоит говорить особо.

В России сложилась многовековая собственная история науки, которая вплотную приблизила ее к передовому фронту мировой науки и подготовила научное сознание к тому, что главные повороты научной мысли вполне осваивались русскими учеными.

Еще в XVIII в. великий реформатор Петр I, стремясь догнать европейскую цивилизацию, решил использовать силу науки для достижения этой цели. Была создана Российская (Петербургская) академия наук, в которой начали работать иностранные ученые. Но достаточно скоро появились русские ученые умы. Для истории представляет интерес, что в России впервые заявило о себе международное, по сути, сообщество ученых. Это был новый субъект науки, который дал множество плодотворных научных результатов мирового значения. Россия также вышла на высокий уровень в международный век научного Просвещения. Этому способствовало уникальное строение первого российского научного учреждения, которое совмещалось с учебным учреждением. Российские научные гении этой эпохи участвовали в разработке главных направлений науки, содействуя внедрению фундаментальных научных парадигм, связанных с механистическим мировоззрением. Выдающиеся результаты такого уровня принадлежат Л. Эйлеру, Д. Бернулли, М. Ломоносову.

JI. Эйлер заложил основы механики твердых тел, аналитически исследовал ньютоновскую динамику материальной точки, разработал новую концепцию движения Луны. С его именем связан подлинный математический прорыв в механистической методологии. Д. Бернулли заложил основы математического решения задач гидравлики, разрабатывал кинетическую теорию газов. Это был прорыв на более высокий уровень математического описания природы, нежели использование математики Г. Галилеем и И. Ньютоном. Отмечая мощный вклад М. Ломоносова в достижения первой научной революции, укажем только, что он принимал живейшее участие в создании молекулярно-кинетической теории. Здесь механика поворачивалась от теории небесных и земных тел к атомно-молекулярным явлениям. Она осваивала идею уровневого строения природы. Ломоносов стал также новатором в разработке учения о планетной составляющей Солнечной системы. Он, в частности, описал строение Земли, открыл атмосферу Венеры.