Сокращение величины энергоемкости при вскрытии двумя фланговыми траншеями возможно при использовании такой расстановки вскрышного и добычного оборудования, когда вскрышные и добычные работы ведутся в разных участках фронта работ. Например, вскрышные работы ведутся от центра к флангу карьера, а добычные работы – от центра к противоположному флангу.
Разработка с тремя вскрышными траншеями (две фланговые и центральная) (Рис.26).
Рис.26 Технологическая схема разработки месторождения со вскрытием карьерного поля тремя траншеями.
В данной технологической схеме происходит усложнение вскрышных работ. Центральная часть карьера должна быть высвобождена от вскрышной породы, переваливаемой в отвал. Для размещения породы в отвале необходимо создать дополнительное отвальное пространство на боковых частях отвала, прилегающего непосредственно к центральной вскрышной траншеи. Этого можно достигнуть, применяя на вскрыше оборудование с увеличенными технологическими параметрами. Транспортирование полезного ископаемого осуществляется по кратчайшему пути.
Энергоемкость этой схемы существенно зависит от длины транспортирования. Сокращение пути транспортирования за счет увеличения количества вскрышных траншей и применения различных способов расстановки горного оборудования по фронту работ уменьшает суммарную энергоемкость разработки.
2. На вскрыше роторный экскаватор с отвалообразователем. Разработка полезного ископаемого осуществляется механической лопатой с погрузкой в автосамосвалы, с дорогой расположенной на подошве добычного уступа.
Разработка с двумя фланговыми вскрышными траншеями (рис.27 ).
Рис.27 Технологическая схема разработки месторождения роторным комплексом со вскрытием карьерного поля двумя фланговыми траншеями.
По энергоемкости эта технология и схема вскрытия не имеет преимуществ перед вскрытием карьерного поля одной фланговой траншеей. Для обеспечения независимости работы вскрышного и добычного оборудования создаётся запас вскрытого полезного ископаемого на величину ширины одной заходки.
Разработка с одной центральной вскрышной траншеей (рис.28).
Рис.28 Технологическая схема разработки месторождения со вскрытием карьерного поля одной центральной траншеей
Отработка вскрыши осуществляется от центра к флангам карьера. Вскрышные и добычные работы ведутся в разных частях карьера, что обеспечивает независимость добычных работ. Энергоёмкость этой схемы разработки и вскрытия карьерного поля меньше, чем описанные выше, но необходимость иметь в выработанном пространстве карьера среди отвалов вскрышных пород траншею создают трудности в её поддержании в рабочем состоянии и, следовательно, уменьшает эффект от снижения затрат энергии на разработку.
Исходными данными для расчета энергоемкости вскрытия карьерного поля служат:
природные условия месторождения;
мощность вскрыши и пласта полезного ископаемого;
объемы вскрышных пород и полезного ископаемого;
плотность вскрышных пород и полезного ископаемого;
удельное сопротивление пород копанию.
В конкретных условиях при проектировании нового карьера или его реконструкции оценка вскрытия карьерного поля месторождения энергетическим методом производится в следующем порядке.
1. Конструируются технологические схемы для возможных вариантов комплексной механизации вскрышных и добычных работ в профиле и плане.
2. Определяются возможные варианты вскрытия карьерного поля и устанавливаются кинематические схемы перемещения вскрышных пород и полезного ископаемого.
3. Производится оценка вариантов технологических схем по величине энергозатрат.
4. Для схемы с минимальным значением энергозатрат определяется типоразмер горного и транспортного оборудования.
4.5 Энергетическая оценка вскрытия наклонных и крутопадающих месторождений
Исследования современных энергозатрат в технологических процессах показывают, что из общего расхода электроэнергии по карьеру электропотребление железнодорожным транспортом составляет 34,5-79,3 %, буровзрывными работами 1,8-17,6 %, экскавацией 15,0-25,2 %, вспомогательными работами 2,2-15,2 %.
Фактический удельный расход электроэнергии на крупных карьерах с железнодорожным транспортом составляет 1,6-2,9 кВт∙ ч /т и 0,17-2.5 кВт∙ ч/ткм.
В целом затраты на транспорт горной массы в карьерах составляют от 50 до 90 % общих затрат на добычу полезного ископаемого открытым способом.
Вместе с факторами технологии и механизации горных работ энергетическая оценка транспортных систем является основанием для принятия решения по вскрытию месторождения при открытой разработке полезных ископаемых.
Энергетическая оценка дополняет денежную. Денежная оценка дает основание для выработки производственной тактики, энергетический анализ - для выработки стратегии вскрытия эксплуатационного пространства карьера.
Оценка вскрытия эксплуатационного пространства карьерного поля по энергетической теории заключается в определении энергозатрат транспорта горной массы по системам вскрывающих выработок в эксплуатационный период. Она определяется с учётом параметров транспорта, трассы, свойств вскрышных пород и полезного ископаемого.
Энергетический анализ карьерного транспорта многих исследователей позволяет оценить совершенство существующих транспортных систем на карьерах, область применения различных видов транспортных средств и их сочетание, пути их совершенствования и в целом транспортных систем, а в результате – систему вскрытия карьеров.
Исследования, выполненные д.т.н. Ю. И. Лелем и к.т.н. Е. Ю Терёхиным. в области энергоёмкости транспортных систем на карьерах по удельному расходу условного топлива, показали, что расход энергии является универсальным показателем, определяющим эффективность транспорта горной массы на карьерах.
Критерий «удельные затраты условного топлива» представляет собой подъем 1 т горной массы из карьера с расходом дизельного топлива и электроэнергии, приведенные к условному топливу (у.т.).
Удельная энергоёмкость в условном топливе (кг у.т./т равен 0,03 МДж/т или кг у.т./кг равен 30 Дж/кг) технологических процессов при открытой разработке месторождений полезных ископаемых составляет: на перевозку автомобильно-конвейерным транспортом 47,1-76,8%, сборочным автотранспортом до перегрузочного пункта 21,8-27,3%, железнодорожным транспортом 42,8-53,3%, на бурение взрывных скважин 1,7-5,9%, экскавацию 7,7-13,6%, экскаваторную погрузку на перегрузочном пункте 7,8-10,0%, отвалообразование 5,4-8,6%
Сопоставление энергетической эффективности различных видов транспорта по фактическим данным железорудных карьеров приведено в табл.10.
Таблица 10
Энергетическая эффективность карьерного транспорта
Вид транспорта
Показатель
Удельная энергоёмкость
г/тм
кВт∙ч/тм
г у.т./тм
Автомобильный
2,3-2,8
-
4,4-5,2
Железнодорожный
-
0,010-0,12
3,6-4,4
Конвейерный
-
0,005-0,008
1,7-2,8
Энергетические показатели различных видов транспорта при работе на гоизонтальных трассах составляют в условных единицах:
автотранспорт 95 – 130 г у.т./ткм,
ж.-д. транспорт 34 - 45 г у.т./ткм,
конвейерный транспорт 57 - 70 г у.т./ткм.
В глубоких карьерах энергетическая эффективность конвейерного транспорта в 1,9-2,2 раза выше, чем электрифицированного железнодорожного и в 2,4-3,0 раза выше, чем автомобильного.
Анализ энергозатрат транспорта горной массы на карьерах позволяет сделать выводы эффективности комбинированного транспорта, совершенствования параметров трассы грузопотоков, сокращения расстояния перевозки в грузопотоке и конструктивного совершенствования средств транспорта, определяющих способы вскрытия карьеров.