Выбрать главу

Формирование комбинированных транспортных систем повышает их эффективность и поддержание объемов сборочных автоперевозок на минимальном, технологически необходимом уровне.

Этот вывод подтверждает эффективность отработки месторождений по глубине этапами, при которой:

на первом этапе эффективен один вид транспорта,

на втором - комбинированный с использованием в качестве магистрального железнодорожный или конвейерный транспорт, а сборочного – автомобильный,

на третьем – в качестве магистрального транспорт по подземным горным выработкам (конвейерный или грузоподъёмный), а сборочного – автомобильный (Рис.29).

Рис.29 Разделение карьерного поля на этапы отработки по принципу эффективности вскрытия рабочей зоны

Оптимальный продольный уклон трасс по энергетическому критерию для отдельных видов транспорта и конкретных моделей транспортных средств рассматривается как частный оптимум и нижний предел уклона. Он определяется топливной экономичностью, конструктивными параметрами транспортных средств, качеством дорожного покрытия.

Окончательное решение по руководящим уклонам трасс принимается на основе энергозатрат всей транспортной системы.

На глубоких карьерах эффективно повышение уклонов трасс, в первую очередь магистральных видов транспорта (железнодорожного или конвейерного) в комбинированных транспортных системах с автомобильным транспортом в качестве сборочного звена. В этом случае энергозатраты на магистральный транспорт увеличиваются на 10-12 %, но сокращаются энергозатраты транспортной системы в целом за счет сокращения разноса бортов карьера и ограничения зоны работы наиболее энергоемкого сборочного автотранспорта.

Поддержание расстояний автоперевозок на минимальном уровне с целью перераспределения части затрат со сборочного на магистральные виды транспорта, характеризуются высокими показателями энергетической эффективности.

Это достигается внедрением полустационарных и передвижных (мобильных) перегрузочных пунктов, крутонаклонных конвейеров, повышенных уклонов (до 60 о/оо).

Использование мобильных перегрузочных пунктов (Рис.30) расширяет возможности снижения энергопотребления за счет частичной (двух горизонтов из трёх) перевозки сборочным автотранспортом "сверху вниз", так как удельный расход при движении автосамосвалов на спуск горной массы сокращается в 1,10 - 1,75 раза по сравнению с работой на подъем, а производительность увеличивается на 15 - 40 %.

Рис.30 Мобильный перегрузочный пункт со сборочного автомобильного на крутонаклонный конвейерный транспорт

При эксплуатации автотранспорта в рабочей зоне карьеров важным направлением снижения энергопотребления является сокращение длины трассы путём эффективной технологии отработки рабочих горизонтов, выбора места расположения и использования временных наклонных берм в массиве или на насыпи.

Основными направлениями конструктивного совершенствования с целью повышения энергетической эффективности автосамосвалов на магистральных перевозках горной массы являются: электрификация автотранспорта, т.е. совершенствование дизель-троллейвозов, и применение повышенных (100 – 120о/оо) уклонов автодорог.

Эффективность дизель-троллейвозов обеспечивают следующие условия: соотношение между стоимостью дизельного топлива и электроэнергии более 4 кВт∙ч/кг, объем перевозок горной массы 8-10 млн. т/год, длина электрифицированного участка трассы 1,8-2,0 км, высота электрифицированного подъема 100-300 м.

Эффективная область применения дизель-троллейвозов характеризуется превышением фактического соотношения между стоимостью дизельного топлива и электроэнергии на конкретном предприятии над предельным. Предельное соотношение зависит от руководящего уклона и эксплуатационных показателей базового автосамосвала и троллейной системы. Фактическое соотношение составляет 10-12 кВт∙ч/кг, что свидетельствует о больших перспективах дизель-троллейвозов на глубоких карьерах. При создании отечественных дизель-троллейвозов нового поколения и увеличении руководящего уклона автодорог до 100-120о/оо коэффициент полезного использования энергии данным видом транспорта составит 7,6-7,8%, т.е. приблизится к показателям железнодорожного транспорта.

Глава 6.

Энергетический анализ развития техники и технологических процессов на карьерах

1.6 Современное состояние техники и технологии разработки месторождений полезных ископаемых.

Применение современной техники на карьерах позволило полностью механизировать добычу, применяя, как правило, разработку месторождений полезных ископаемых открытым способом уступами высотой 15—20 м, шириной заходки 18—24 м, высотой рабочей зоны 60—100 м, длиной фронта работ на горизонте при железнодорожном транспорте 3—4 км, при автомобильном — 1,5—2 км.

Угол откоса рабочего борта карьера составляет 24—28°. Вскрытие осуществляется наклонными траншеями внешнего и внутреннего заложения. Причем различий в технологии разработки полускальных и скальных пород в настоящее время практически нет. Отличаются только отдельные виды машин в комплексной механизации.

Анализ технологии с применением существующей техники, показывает, что за период развития открытого способа вместимость ковшей экскаватора увеличилась в среднем в 10 раз, рабочие параметры экскаваторов увеличились почти в 6 раз, вес и мощность примерно 8—10 раз, вместимость сосудов транспортной техники увеличилась в 5 раз.

В планах развития техники для разработки скальных горных пород эти параметры имеют тенденцию к еще большему увеличению при сохранении прежней технологии.

В настоящее время степень использования оборудования составляет 60-70 % поэтому с увеличением параметров существующих видов горнотранспортной техники при сохранении технологии ведения горных работ будут увеличиваться затраты на производство продукции горной массы.

Эти обстоятельства ставят вопрос о совершенствовании существующей технологии разработки месторождений с крепкими горными породами и главное организации горных работ для доведения степени использования мощного надёжного оборудования в технологическом потоке до 95-97 % , а также возможных перспективах развития техники и технологии на карьерах со скальными породами.

Принципы формирования комплектов оборудования для разработки скальных и полускальных горных пород на основе энергетического метода по технологическим потокам с внутренней организацией и автоматизацией в нем позволят специализировать технику, а, следовательно, снизить затраты на производство продукции.

2.6 Буровзрывная подготовка горных пород к выемке

Бурение. С энергетической позиции, как показано выше, разрушение единицы объема массива для получения горной массы требуемой степени дробления зависит от свойств массива и молекулярных связей горной породы. Дробление массы осуществляется взрывным или механическим способами.

В настоящее время взрывной способ благодаря концентрации большой энергии в единице объема взрывчатого вещества отвечает требованиям подготовки горной массы в больших объемах в единицу времени.

Преимущество взрывного дробления горных пород в массиве заключается в том, что взрыв воздействует сразу на весь массив и это позволяет использовать естественную трещиноватость для разрушения.

Механическое дробление создает напряжение только по осевой линии между контактами нагрузки. В этом случае в дроблении участвует только зона контакта. Периферийные части куска или части массива в процессе дробления в момент приложения напряжения не участвуют. Они участвуют в дроблении в следующий момент приложения нагрузки.