Сопоставление энергетической эффективности различных видов транспорта по фактическим данным железорудных карьеров приведено в табл.4.10 .
Таблица 4.10
Энергетическая эффективность карьерного транспорта
Вид транспорта
Показатель
Удельная энергоёмкость
г/тм
кВт∙ч/тм
г у.т./тм
Автомобильный
2,3-2,8
-
4,4-5,2
Железнодорожный
-
0,010-0,12
3,6-4,4
Конвейерный
-
0,005-0,008
1,7-2,8
Энергетические показатели различных видов транспорта при работе на горизонтальных трассах составляют в условных единицах:
автотранспорт 95 – 130 г у.т./ткм,
ж.-д. транспорт 34 - 45 г у.т./ткм,
конвейерный транспорт 57 - 70 г у.т./ткм.
В глубоких карьерах энергетическая эффективность конвейерного транспорта в 1,9-2,2 раза выше, чем электрифицированного железнодорожного и в 2,4-3,0 раза выше, чем автомобильного.
Анализ энергозатрат транспорта горной массы на карьерах позволяет сделать выводы эффективности комбинированного транспорта, совершенствования параметров трассы грузопотоков, сокращения расстояния перевозки в грузопотоке и конструктивного совершенствования средств транспорта, определяющих способы вскрытия карьеров.
При формировании комбинированных транспортных систем ввод конвейерного и железнодорожного транспорта на большую глубину повышает их эффективность и поддержание объемов сборочных автоперевозок на минимальном, технологически необходимом уровне.
Этот вывод подтверждает эффективность отработки месторождений по глубине этапами, при которой:
на первом этапе эффективен один вид транспорта,
на втором - комбинированный с использованием в качестве магистрального железнодорожный или конвейерный транспорт, а сборочного – автомобильный,
на третьем – в качестве магистрального транспорт по подземным горным выработкам (конвейерный или грузоподъёмный), а сборочного - автомобильный.
Повышение энергетической эффективности комбинации железнодорожного и автомобильного транспорта (во втором этапе отработки более 200-250 м) связано с увеличением глубины ввода железнодорожного транспорта в эксплуатационное пространство карьера путём применения внутрикарьерных тоннелей (рис.4.92).
Эффективность перехода на тоннельное вскрытие из рабочей зоны карьера для железнодорожного транспорта зависит от конкретных природных условий и технологии разработки и находится в диапазоне 180-260 м.
Исследование параметров грузопотоков в карьере показывает, что оптимальный уклон трассы для железнодорожного транспорта с энергетических позиций составляет: для мотор-вагонной тяги 45 - 51°/оо, электровозной 30 - 40 °/оо . Повышение уклона свыше оптимальных значений до 50 - 6О°/оо допустимо при вводе железнодорожного транспорта на большую глубину.
Для автосамосвалов с электромеханической трансмиссией оптимальный уклон зависит от качества дорожного покрытия и составляет для дорог с асфальтобетонным покрытием 80-100 о/оо, с щебёночным – 90-110 о/оо, без покрытия -100-120 о/оо.
При эксплуатации ленточных конвейеров большой производительности оптимальный угол наклона по энергетическому критерию составляет 17-19°.
Оптимальный продольный уклон трасс по энергетическому критерию для отдельных видов транспорта и конкретных моделей транспортных средств рассматривается как частный оптимум и нижний предел уклона. Он определяется топливной экономичностью, конструктивными параметрами транспортных средств, качеством дорожного покрытия.
Окончательное решение по руководящим уклонам трасс принимается на основе энергоемкости всей транспортной системы.
На глубоких карьерах эффективно повышение уклонов трасс, в первую очередь магистральных видов транспорта (железнодорожного или конвейерного) в комбинированных транспортных системах с автомобильным транспортом в качестве сборочного звена. В этом случае энергозатраты на магистральный транспорт увеличиваются на 10-12 %, но сокращаются энергозатраты транспортной системы в целом за счет сокращения разноса бортов карьера и ограничения зоны работы наиболее энергоемкого сборочного автотранспорта.
Поддержание расстояний автоперевозок на минимальном уровне с целью перераспределения части затрат со сборочного на магистральные виды транспорта, характеризуются высокими показателями энергетической эффективности.
Это достигается внедрением полустационарных и передвижных (мобильных) перегрузочных пунктов, крутонаклонных конвейеров, повышенных уклонов (до 60 о/оо) и тоннельного вскрытия для железнодорожного транспорта.
Использование мобильных перегрузочных пунктов расширяет возможности снижения энергопотребления за счет частичной (двух горизонтов из трёх) перевозки сборочным автотранспортом "сверху вниз", так как удельный расход при движении автосамосвалов на спуск горной массы сокращается в 1,10 - 1,75 раза по сравнению с работой на подъем, а производительность увеличивается на 15 - 40 %.
При эксплуатации автотранспорта в рабочей зоне карьеров важным направлением снижения энергопотребления является сокращение длины трассы путём эффективной технологии отработки рабочих горизонтов, выбора места расположения и использования временных наклонных берм в массиве или на насыпи.
Основными направлениями конструктивного совершенствования с целью повышения энергетической эффективности автосамосвалов на магистральных перевозках горной массы являются: электрификация автотранспорта, т.е. совершенствование дизель-троллейвозов, и применение повышенных (100 – 120о/оо) уклонов автодорог.
Расчетами установлено, что эффективность дизель-троллейвозов обеспечивают следующие условия: соотношение между стоимостью дизельного топлива и электроэнергии более 4 кВт∙ч/кг, обьем перевозок горной массы 8-10 млн т/год, длина электрифицированного участка трассы 1,8-2,0 км, высота электрифицированного подъема 100-300 м.
Эффективная область применения дизель-троллейвозов характеризуется превышением фактического соотношения между стоимостью дизельного топлива и электроэнергии на конкретном предприятии над предельным. Предельное соотношение зависит от руководящего уклона и эксплуатационных показателей базового автосамосвала и троллейной системы. Фактическое соотношение составляет 10-12 кВт∙ч/кг, что свидетельствует о больших перспективах дизель-троллейвозов на глубоких карьерах России. При создании отечественных дизель-троллейвозов нового поколения и увеличении руководящего уклона автодорог до 100-120о/оо коэффициент полезного использования энергии данным видом транспорта составит 7,6-7,8%, т.е. приблизится к показателям железнодорожного транспорта.
Ю.И.Анистратов «Технологические потоки на карьерах (Энергетическая теория открытых горных работ)»
М., «Глобус», 2005г.
Ю.И.Анистратов, К.Ю.Анистратов «Проектирование карьеров» М. Изд. НПК «Гемос Лимитед» 2002 г.
Ю.И.Анистратов «Технологические процессы открытых горных работ» М., «Недра», 1995 г.