Иначе обстоит дело с медицинской терапией, основанной на современных знаниях в области генетики. Как можно узнать из опубликованных в настоящее время материалов, а во времена СССР – секретных, в Советском Союзе еще в 20-е годы были предприняты попытки скрещивания человекообразных обезьян с людьми. К счастью, из этого ничего не вышло. Это правда, что между геномом шимпанзе и человека различие составляет всего два процента, но в действительности – это миллиарды пар нуклеотидов. Вопрос в том, можно ли, возможно ли и следует ли удалять гены, которые в процессе развития организма приводят к наследственным дефектам, поставлен хорошо, но до сих пор нет на него однозначного ответа, поскольку оказывается, что для всех генетических недостатков человека в целом ни «да», ни «нет» ответить нельзя. Мне кажется, есть весьма острая необходимость нового, значительно усовершенствованного издания «Энциклопедии неведомого», устаревшей за последние двадцать лет. В ней вообще не было и речи о биотехнологии, а тем более – ни слова об этических проблемах, возникающих при подобном экспериментировании. Различные трансгенетические эксперименты позволили вывести многие виды растений с новыми потребительскими свойствами, однако эти эксперименты сопровождает страх перед непредсказуемыми результатами распространения и использования измененных таким образом растительных продуктов. С уверенностью можно сказать одно: вся эта область неимоверно запутанна и сложна – сверх человеческого понимания.
Появилась также новая, пока только экспериментальная, ветвь медицинской терапии, которая наряду с паутиной является еще одним примером того невероятного, что можно ожидать при осуществлении лозунга «догнать и перегнать жизненные процессы». Этот лозунг, провозглашенный мной в 1963 году, не только призрачная мечта, но и действительность, становящаяся как многообещающей, так и угрожающей.
На бактериях паразитируют фаги (например, палочка, развивающаяся и в нашем кишечнике), которые в несколько сотен раз меньше, чем отдельный эритроцит. Биологи утверждают, что это создание не живое и не мертвое. Оно не живое, поскольку в нем не происходит никаких процессов обмена веществ. Такой фаг имеет «голову», под которой при надлежащем увеличении видны расставленные «ножки». Найдя бактерию Escherichia coli[3] и распознав ее биохимически, он всовывает свою «голову» внутрь бактерии. С этой минуты он становится хозяином происходящих внутри бактерии жизненных процессов и так переключает их биохимические стрелки, что бактерия превращается в фабрику сотен фагов, после чего она лопается, а потомство фагов движется в поиске новых «жертв». Многие биологи считали, что встрече со своей «жертвой-бактерией» фаг обязан случаю. Однако в настоящее время процесс такого «поиска» считается более телеологическим. В основном путь фага соответствует зигзагообразной траектории частиц, подверженных броуновскому движению. Бактерия же выделяет в окружающую ее жидкую среду конечные молекулы обмена веществ. Происходит асимметричная концентрация таких выделений, и тем самым возникает след, который и использует фаг при поиске бактерийных клеток. Биологи склонны называть такого рода фаги химическими неживыми машинками, которые размножаются только внутри бактерийных клеток, завладев их обменом веществ.
Представленные выше явления направленного движения фагов биофизика причисляет к броуновскому движению, управляемому слабыми асимметричными полями. Такие процессы часто происходят там, где мы имеем дело с так называемыми фибриллярными белками. На сетке фибриллярных волокон происходят процессы энергетического наполнения живых тканей. Вдоль такого волокна движется так называемый ферментный мотор и, следовательно, управляемая генами микрочастица, которая проявляет асимметрию. Большие (в клеточном масштабе – многомикронных размеров) группы такого рода могут в ходе строительства генетической информации транспортировать различные субстанции, например рибонуклеиновые полимеразы. На основе управляемого броуновского движения можно представить картину развития будущих биотехнологий, которые позволили бы нам использовать абсолютно новые методики доставки активных соединений в глубь организма. Например, так называемая основа-матка, заполненная необходимым для организма веществом, движется в соответствии с кровообращением или обращением лимфы, и это не просто фантазия. Первые относительно простые варианты этой микромашинной технологии уже появляются. Например, заменители крови, переносящие газы. Их действие основано на том, что очень маленькие молекулы производных фторида углерода переносят кислород от эритроцитов к тканям. В артериальной крови эритроцит, который примерно в сто раз больше, чем молекулы эмульсии, выполняет, собственно, функции основы, насыщенной кислородом. Периодически циркулируя между эритроцитами и тканью, хорошо растворяющей в себе кислород, молекулы фторида углерода переносят его от эритроцитов к кровеносным сосудам, и таким образом кислород проникает из сосудов в ткани. Такого рода прикладная биотехнология позволяет нам пересылать лечебные субстанции в глубь организма к определенным органам-адресатам. До сих пор естественным считается то, что самые разнообразные виды лекарств принимаются внутрь через рот, в результате чего они распространяются по всему организму скорее хаотично и стихийно. Новый вид терапии будет осуществлять адресную ориентацию на органы, требующие медикаментозной или, проще говоря, жизненной поддержки.