Выбрать главу

Недавно обнаружен и вне(эпи)генетический способ наследования приобретенных изменений. Оказалось, что в процессе жизнедеятельности к молекулам ДНК в клетках (в том числе и в половых) специальные ферменты "пришивают" метильные группы (-CH3). Причем к одним генам метильных групп "пришивается" больше, к другим — меньше. Распределение метильных групп по генам (так называемый рисунок метилирования) зависит от того, насколько активно тот или иной ген используется. Получается совсем как с упражнением и неупражнением органов, которое Ламарк считал причиной наследственных изменений. Поскольку "рисунок метилирования" передается по наследству и поскольку он, в свою очередь, влияет на активность генов у потомства, легко заметить, что здесь может работать совершенно ламарковский механизм наследования: "натренированные" предками гены будут и у потомства работать активнее, чем "ослабевшие" от долгого неиспользования[29].

Другой вариант "эпигенетического" наследования приобретенных признаков основан на взаимной активации и инактивации генов.

Допустим, ген А производит белок, одна из функций которого состоит в блокировании работы гена Б, а ген Б, в свою очередь, кодирует другой белок, способный "выключать" ген А. Такая система может находиться в одном из двух состояний: либо ген А работает, и тогда ген Б выключен, либо наоборот. Допустим, что переход системы из одного состояния в другое может происходить только в результате какого-то особенного внешнего воздействия. То состояние, в котором находится эта двухгенная система в клетках матери, будет через яйцеклетку передаваться ее потомству (поскольку сперматозоид содержит пренебрежимо малое количество белков). Если же в течение жизни матери система переключится в другое состояние, то этот признак передастся потомству, родившемуся после "переключения". Опять получается "наследование по Ламарку"[30].

Что же касается мутаций, то и тут классические неодарвинистские представления оказались не совсем верными. Мутации, по-видимому, не являются полностью случайными. Хорошо известно, что разные участки генома мутируют с разной скоростью, причем у каждого участка эта скорость довольно постоянна. По-видимому, это означает, что одним генам организм "разрешает" мутировать чаще, чем другим. А недавно появилось хорошо обоснованное предположение, что в клетках существуют специальные механизмы для целенаправленного увеличения скорости мутаций определенных участков генома[31].

Гигантская двойная спираль ДНК, может быть замкнута или линейна и скручена особым образом, формируя хромосомы. На концах линейных хромосом находятся специализированные структуры ДНК, называемые теломерами. Число хромосом различно у разных организмов. При делении клетки хромосомы деспирализуются и на базе каждой полимерной молекулы ДНК синтезируется ее копия. Тем самым в клетке перед делением число хромосом удваивается. Они при делении расходятся в две клетки и из каждой пары хромосом одна идет в одну дочернюю клетку, а другая в другую дочернюю клетку.

Тем самым последовательность нуклеотидов оказывается стабильной и информация не меняется при делении. Поэтому каждая дочерняя клетка может синтезировать тот же самый набор белков, что и материнская. Геном называется участок ДНК, кодирующий один белок. Он начинается с так называемого старт кодона, которые указывает молекуле белка, ответственной за образование молекулы информационной РНК в ядре, что именно здесь начинается информация, кодирующая данный белок. Похожий сигнал есть и в конце гена. Другими словами, промотор сигнал (или инициирующий сигнал) и стоп сигнал определяют, когда надо начинать транскрипцию и когда закончить. Запомните! переписывание информации с ДНК на ДНК — это репликация. Переписывание информации с ДНК на РНК — это транскрипция. Переписывание информации с РНК на белок — это трансляция.

вернуться

29

29. Марков А.

вернуться

30

30. Марков А.

вернуться

31

31. Марков А.