Раз за разом жизнь умудряется избежать катастрофических неудач и не сбиться с курса.
До недавнего времени у ученых не было достоверных свидетельств о том, почему жизнь обладает такой устойчивостью. Чтобы определить источник устойчивости, необходимо изучить живые системы на глубочайшем уровне подробнейшим образом, сжиться с ними — примерно так же, наверное, как конструктор сживается с создаваемой им системой автопилотирования, используя ее схему для проведения экспериментов. Однако принципиальные схемы живых существ по большей части по — прежнему остаются для нас тайной за семью печатями. E. coli — одно из немногих исключений.
В борьбе за выживание E. coli постоянно сталкивается с серьезнейшими угрозами. Положите в солнечный день чашку Петри на подоконник, и вы поставите обитающих в ней бактерий на грань катастрофы. Жара оказывает на белки E. coli губительное действие. Чтобы работать правильно, каждому белку необходимо все время сохранять характерную только для него скрученную форму, по сложности напоминающую оригами. Перегретый белок разворачивается и становится похожим на спутанный клубок — он денатурируется. Такой белок уже не способен выполнять работу, от которой зависит выживание E. coli.
И все же кишечная палочка не умирает от повышения температуры на несколько градусов. Когда температура поднимается, бактерия начинает синтезировать так называемые белки теплового шока. Они выполняют двойную защитную функцию. Некоторые обхватывают начавшие денатурироваться белки E. coli и возвращают им надлежащую форму. Остальные распознают белки, пострадавшие от жары настолько, что их уже невозможно привести в порядок, и разрезают на части, пригодные для строительства новых белков.
Белки теплового шока вполне способны спасти хозяйке жизнь, но E. coli не в состоянии держать «под рукой» запас таких белков на случай будущих неприятностей. Надо сказать, что эти белки — одни из самых крупных в ее арсенале, а чтобы пережить тепловой удар, могут потребоваться десятки тысяч таких молекул. Производить их про запас — все равно что заставить двор своего дома пожарными машинами на случай, если дом вдруг загорится. С другой стороны, если пожарная машина нужна, то нужна она быстро. E. coli, затратив слишком много времени на производство белков теплового шока, может погибнуть, не дождавшись помощи.
Эта особенность привлекла внимание инженера Калифорнийского технологического института Джона Дойла и его коллег. В прошлом Дойл занимался теорией создания систем управления для самолетов и космических кораблей многоразового использования. Однако оказалось, что в клетке E. coli скрыты конструкторские решения, ничуть не уступающие тем механизмам, в создании которых ему довелось принимать участие. Вместе с коллегами Дойл начал изучать белки теплового шока и то, как бактерия с их помощью выживает.
Исследователи выяснили, что E. coli контролирует запас белков теплового шока с помощью механизма отрицательной обратной связи. С точки зрения инженера, обратная связь возникает тогда, когда выход какой‑то схемы начинает влиять на ее же вход. Так, термостат поддерживает температуру в доме примерно на одном уровне при помощи одной из простейших форм обратной связи. Термостат измеряет температуру в доме и, если она оказывается слишком низкой, включает обогреватель. Если температура слишком высокая, он выключает обогреватель.
E. coli защищается от высокой температуры примерно так же. Ключевой белок ее «термостата» называется сигма-32, который регулирует, какие именно гены будет считывать РНК — полимераза. Даже при невысокой температуре бактерия постоянно считывает ген, отвечающий за синтез сигма-32, и синтезирует его РНК — копии. Но при нормальной температуре молекулы РНК сигма-32 находятся в свернутом состоянии, и E. coli не может использовать их для синтеза белка. Поэтому при нормальной температуре в бактериальной клетке много РНК сигма-32, но совсем нет соответствующего белка.
Однако, когда температура окружающей среды повышается, РНК сигма-32 разворачивается. Теперь рибосомы могут прочитать эти молекулы и синтезировать по ним белок сигма-32, и E. coli за короткое время производит огромное количество этого белка. Молекулы сигма-32 быстро находят молекулы РНК — полимеразы и направляют их к генам, отвечающим за производство белков теплового шока. Таким образом, на синтез десятков тысяч молекул белка теплового шока уходит всего несколько минут.