Эйвери и его коллеги стали выделять из убитых бактерий одно химическое соединение за другим и добавлять их в чашки с непатогенными штаммами бактерий. Они обнаружили, что интересующее их превращение обеспечивает только одно вещество. И это был не белок, а соединение под названием дезоксирибонуклеиновая кислота, или сокращенно ДНК.
О существовании ДНК ученые знали уже несколько десятилетий, но не представляли себе, зачем она нужна. В 1869 г. швейцарский биохимик Иоганн Мишер обнаружил в гное на повязках раненых солдат богатое фосфором вещество, которое получило название нуклеиновой кислоты. Позже ученые выяснили, что существует две почти идентичные нуклеиновые кислоты: дезоксирибонуклеиновая и рибонуклеиновая (РНК)[3]. Каркас ДНК состоит из остатков фосфорной кислоты, соединенных с остатками сахара дезоксирибозы. К нему прикрепляются четыре типа богатых углеродом и азотом соединений — так называемые азотистые основания.
Было ясно, что ДНК играет в живом организме важную роль — ведь ученые находили ее практически в любых клетках. Ее обнаруживали даже в хромосомах, где, как уже было известно, располагались гены. Но многие исследователи считали, что ДНК просто обеспечивает хромосоме жесткую основу, каркас — возможно, она обвивается вокруг генов, как манжета. Мало кто думал, что ДНК имеет достаточно сложную структуру, чтобы быть материальным носителем генов. ДНК, как выразился однажды Дельбрюк, «такое глупое вещество!»
Глупое или нет, но Эйвери сделал вывод: ДНК — именно то, из чего состоят гены. Но его эксперименты не смогли убедить закоренелых скептиков:
Вирус вводит свою ДНК в клетку E. coli
коллеги решили, что ДНК у него была недостаточно хорошо очищена и, возможно, содержала примеси каких‑то белков.
Чтобы восстановить репутацию ДНК, потребовалось еще целое десятилетие исследований на E. coli и ее вирусах. Пока Эйвери исследовал пневмококк в поисках генов, адепты дельбрюковой «Церкви фагов» пытались увидеть вирусы E. coli. Надо сказать, что вирусы в представлении ученых были уже не математическими абстракциями, а вполне материальными маленькими существами. При помощи недавно изобретенного прибора — электронного микроскопа — Дельбрюк и его коллеги обнаружили, что бактериофаги заключены в оболочку элегантной геометрической формы. Закрепившись на поверхности E. coli, фаг прокалывал клеточную стенку бактерии с помощью специальной белковой иголки и вводил в своего нового хозяина некую субстанцию. Гены вируса проникали в клетку E. coli, а пустая оболочка оставалась на ее поверхности.
Жизненный цикл вирусов, инфицирующих E. coli, дал ученым возможность провести простой и красивый эксперимент. Альфред Херши и Марта Чейз, исследователи из частной лаборатории в Колд — Спринг — Харбор в штате Нью — Йорк, пометили радиоактивными изотопами ДНК бактериофагов. Позволив этим вирусам внедриться в клетки E. coli, они затем с помощью высокоскоростного центрифугирования удалили с бактерий их пустые оболочки. Теперь радиоактивное излучение регистрировалось в бактериях, а не в покинутых оболочках.
Затем Херши и Чейз провели обратный эксперимент, в котором радиоактивные метки вводились не в ДНК, а в белок вируса. В этом случае после инфицирования E. coli радиоактивность сохраняли только пустые оболочки. Так через десять лет после эксперимента Эйвери Херши и Чейз подтвердили его вывод: гены состоят из ДНК.
Среди тех, кого больше других заинтересовали новые результаты, был молодой американский биолог Джеймс Уотсон. Его приняли в лоно «Церкви фагов» в возрасте всего лишь 20 лет, и при подготовке диссертации он, как и его коллеги, с энтузиазмом облучал вирусы E. coli рентгеновским излучением. Он прекрасно усвоил общепринятое мнение о том, что гены сделаны из белков, но собственные исследования заставили молодого ученого обратить внимание на ДНК. В эксперименте Херши и Чейз Уотсон увидел «новое убедительное доказательство того, что первичным генетическим материалом является ДНК».
Однако, чтобы понять, как ДНК может служить генетическим материалом, необходимо было как следует разобраться в структуре этого вещества. К этому времени Уотсон уже работал в Кембриджском университете, где быстро объединил усилия с Фрэнсисом Криком — британским физиком, тоже мечтавшим раскрыть тайну жизни. Вместе они тщательно изучили все данные о ДНК, собранные к тому времени учеными, и попытались разобраться, как располагаются по отношению друг к другу фосфаты, сахара и азотистые основания. В феврале 1953 г. они внезапно поняли структуру этой молекулы. Молодые люди собрали из стальных пластинок и стержней гигантскую модель, похожую на скрученную в спираль лесенку из сахаров и фосфатов, перекладинами которой служили азотистые основания.