Африканский малярийный комар был завезен в Бразилию приблизительно в 1929 г. Хотя малярийный паразит уже был в Бразилии, новый переносчик существенно расширил границы малярийных очагов и увеличил число случаев болезни. Так как он не смог приобрести необходимую в Южной Америке темно зеленую окраску, то постепенно был элиминирован. Однако, по различным оценкам, от перенесенной им малярии погибло до 20 тыс. человек [Wilson M., 1995].
Распространение инфекций самолетами. Артроподы способны перенести самые тяжелые условия воздушного путешествия. Опытным путем было установлено, что они прекрасно выживают при длительном полете при температуре — 42 °C в колесах Боинга 747В. В 12 из 67 самолетов, прилетевших в Лондон из тропических стран, были обнаружены москиты [Russell R., 1987]. По этой причине, из переносимых москитами инфекционных болезней, в неэндемических районах наиболее часто встречается «малярия аэропортов» [Morse S., 1995].
Распространение инфекций наземным транспортом. Переносчик африканского трипаносомоза Glossina palpalis, неспособен проделать путь, превышающий 21 км, однако, благодаря наземному транспорту он распространяется на значительно большие расстояния [Wilson M., 1995].
Распространение инфекций экзотическими животными. Семь человек в г. Марбург (Германия) погибли от геморрагической лихорадки, вызванной инфицированием от угандийских обезьян вирусом, в последствии, получившем название этого города. Отмечены внутри лабораторные заражения людей герпесвирусом В от обезьян и геморрагической лихорадкой с почечным синдромом от грызунов [Wilson M., 1995].
Технологии и индустрия. Быстродействие характеризует не только туризм, но и другие индустрии современного мира. Технологии, применяемые для производства продуктов питания и других продуктов биологического происхождения, как правило, эффективны и недороги, но их использование одновременно увеличивает риск случайной контаминации и приводит к многократному усилению последствий такой случайности. Медицинские назначения — также передняя линия экспозиции людей к возбудителям новых инфекционных болезней. Проблема усугубляется глобализацией, позволяющей микроорганизму распространяться на очень большие расстояния [Morse S., 1995].
Увеличению числа новых инфекционных болезней способствует и улучшение технологий их диагностики. Оказывается, что с возбудителями многих из них мы давно уже знакомы. Проблемой являются условия, при которых их эпидемическая значимость повышается. Ниже мы рассмотрим механизмы появления и распространения новых инфекций препаратами крови, в стационарах и продуктами питания.
Препараты крови. Препараты крови обычно подвергаются контролю, считается, что они не опасны. Однако насколько эффективен этот контроль? И что же, все-таки, контролируется в крови доноров? Поищем ответ на эти вопросы на примере возбудителей инфекций, использующих вторую стратегию паразитизма.
В настоящее время основным способом выявления ВИЧ-инфекции является обнаружение в периферической крови иммуноглобулинов против антигенов вируса (в основном протеинов и гликопротеидов gp 120, gp41, p24). Но так можно диагностировать ВИЧ и другие ретровирусы (например, возбудителей лейкоза HTLV 1, 2) лишь после сероконверсии. Если исследуемый донор инфицирован высокоэкспрессивным штаммом, антитела возникают относительно быстро — до 3 мес. Но «молчащая инфекция» таким способом не выявляется (Медников Б.М., 1993). Насколько эта проблема серьезна, говорят данные сравнительного исследования иммунологическими методами и ПЦР детей, родившихся от ВИЧ-инфицированных матерей.
Как следует из результатов N. Shaffer и соавт. (1992), после рождения ребенка антитела в его крови появляются через месяц у 60 % испытуемых (рис. 44). Далее, на втором месяце, число серопозитивных младенцев становится ниже 40 %. Это соответствует первой стадии иммунного ответа, когда иммуноглобулины, связываясь с вирусом, «захватываются» макрофагами и продолжают инфицировать организм. В результате после 6 месяцев жизни ребенка сероконверсия достигает только 70 %.
Рис. 44. Несоответствие результатов иммунной реакции данным ПЦР-анализа при обнаружении людей, инфицированных ВИЧ. Диагностика ВИЧ-инфекции у детей, родившихся от ВИЧ-инфицированных матерей. I — положительный ответ в иммунной реакции, II — в цепной полимеразной реакции [Shaffer N. et al., 1992]. Следовательно, применяемые в повседневной практике иммунологические методы обнаружения ВИЧ не выявляют до трети ВИЧ-инфицированных!