Выбрать главу

Рядом с волноводным выходом расположен вращающийся столик, на который помещают обрабатываемый продукт. Все это находится внутри корпуса СВЧ-печи.

Важно, чтобы излучение (опасное для жизни при непосредственном воздействии на человека) не выходило за пределы корпуса печи.

Корпус печи представляет собой замкнутую металлическую конструкцию, которая одновременно является экраном для излучения СВЧ во время работы печи (см. рис. 1.1).

1.3.1. СВЧ-установки и их рабочие камеры

При любом назначении СВЧ электротермической установки она имеет структурную схему, приведенную на рис. 1.9.

Рис. 1.9. Структурная схема СВЧ-установки

Как было замечено выше, основным генератором СВЧ-энергии является магнетрон. Из приборов других типов наиболее перспективны клистроны и СВЧ-триоды. Генерируемая мощность поступает по волноводу (линия связи) в рабочую зону СВЧ-печи, представляющую собой прямоугольную камеру (рабочая камера). Рядом с волноводным выходом расположен диссектор, вращающийся от воздушной струи вентилятора. Диссектор необходим для того, чтобы получать равномерное распределение СВЧ-поля по объему камеры и, следовательно, обеспечить равномерный нагрев продукта.

Многие в этом месте зададут себе или мысленно автору справедливый вопрос: какой диссектор, это же «вчерашний день». Отнюдь, дорогие мои. В китайских СВЧ-печах, которые традиционно уже продаются на всей территории России, действительно в новейших конструкциях СВЧ-печей используют вращающийся столик, на который помещают обрабатываемый продукт. Система управления (иначе – блок управления и ввода информации) управляет технологическим процессом обработки. А в новейших СВЧ-бытовых установках, которые сегодня продаются в Европе, в частности в магазинах Германии и Финляндии, такие установки не содержат вращающегося столика, а имеют именно диссектор, то есть наиболее предприимчивые финны и германцы и их партнеры из Китая вернулись снова к диссекторам. Причем качество приготовления продуктов, на мой взгляд, в таких СВЧ-печах только улучшилось, значит, как обычно, через 20 лет и нам в России надо ждать такие же бытовые СВЧ-установки.

Установки и камеры должны удовлетворять определенным требованиям. Так, они должны обеспечивать заданный технологический режим термообработки, надежную работу генератора, защиту обслуживающего персонала от СВЧ-излучения.

К рабочей камере предъявляется требование равномерного нагрева по объему объекта с заданной скоростью нарастания температуры (темпом нагрева).

Для надежной работы генератора коэффициент стоячей волны по напряжению камеры не должен превышать допустимого для данного генератора значения. В этом отношении наибольший интерес представляют камеры с бегущей волной, так как они, практически не влияя на работу генератора, могут быть использованы с любым источником СВЧ-энергии.

Защита обслуживающего персонала от СВЧ-излучения осуществляется разумным конструированием системы загрузки-выгрузки. В конструкции рабочей камеры современной СВЧ-печи обязательно установлены блокировочные устройства, выключающие генератор в аварийных ситуациях.

1.3.2. Бытовая термообработка

Для бытовой термообработки в диапазоне волн СВЧ используются электромагнитные колебания на частотах 2375, 2450 МГц – у очень старых моделей и до 10–12 ГГц – в современных печах. В табл. 1.1 приведены сведения о глубине проникновения электромагнитной волны в некоторые из диэлектриков с потерями. Если вместо диэлектриков (продуктов) помещать в бытовую СВЧ-установку проводящие предметы, например металлическую банку с тушенкой, то часто такой эксперимент приводит к последующему ремонту СВЧ-печи.

Наряду с накальными магнетронами существуют безнакальные. Магнетроны с безнакальным автокатодом типа МИ (магнетрон импульсный) обладают рядом существенных преимуществ перед накальными магнетронами, применяемыми в бытовых СВЧ-печах.

Они позволяют обеспечить «мгновенную» (с первого импульса) готовность без затраты энергии на разогрев катода; существенно повысить надежность работы магнетрона; упростить схему передающего устройства, исключив из схемы десяток радиокомпонентов в связи с отсутствием необходимости в высокопотенциальном трансформаторе, управляющем устройстве и регуляторе напряжения в цепи накала (блока БУВИ – см. структуру на рис. 1.10), задающем и блокинг-генераторах, реле времени и др.; уменьшить массу и габариты прибора; снизить себестоимость готового изделия, одновременно повысив его эксплуатационную надежность.