Изменяется ли энтальпийная составляющая при фотографировании? Конечно, да. Ведь энергия света, взаимодействующего с освещаемым объектом и затем – рассеянного света, попадающего в объектив фотоаппарата, обязательно хотя бы частично переходит в тепло: происходит, пусть ничтожно малый, но всё же нагрев поверхности человеческого тела и фотоплёнки или фотобумаги.
Изменяется ли энтропийная составляющая? Безусловно, да. Ведь структура (упорядоченность) поверхности человеческого тела не совпадает с упорядоченностью волокон фотобумаги. Кроме того, температура поверхности тела человека выше на десяток градусов, чем фотоаппарата и фотобумаги. Если мы воспользуемся здесь законом сохранения энергии, то неизбежно придём к выводу, что в момент фотографирования человек (поверхность его тела или его одежда, если он одет) как бы «отдает» часть своей свободной энергии фотобумаге.
Конечно, изменения энтальпийной и энтропийной части энергетически ничтожны, но они не нулевые. Когда экстрасенс подносит руку к фотографии, он говорит о живом человеке – «тепло», а о мёртвом – «холодно». Это означает, что он чувствует H, Т или S.
Согласно корпускулярной модели Ньютона-Эйнштейна, каждый квант света, поглощаясь (серебром или иным фоточувствительным материалом фотобумаги), трансформируется в структурное изменение фотобумаги. Совокупность поглощенных квантов создаёт изображение. Поглощение одного кванта происходит мгновенно, в течение пикосекунды. Трансформация фотографического слоя осуществляется в течение микросекунд. После этого уже ничего не происходит. И никакой связи между объектом и его изображением на фотобумаге, на первый взгляд, не сохраняется. Вроде логично.
Но если вспомнить волновую модель Гюйгенса-Френеля, то всё оказывается не так просто. Свет представляет собой электромагнитные колебания, характеризуемые, в частности, таким параметром как длина волны (она обратна энергии и частоте колебаний). Чем меньше энергия, тем ниже частота, тем больше длина волны. К примеру, радиосигналы характеризуются низкой частотой, малой энергией, но большой длиной волны; один цуг волны колебания электромагнитного кванта СВЧ или радиодиапазона может «охватывать» пространство в несколько сантиметров, метров или километров.
Согласно Луи Де Бройлю, волновую природу имеют не только свет и электроны, но ядра, молекулы и вообще любые материальные частицы. Всё в мире имеет свою длину волны, даже человеческое тело. Грубо говоря, материальные предметы это, по сути, не только предметы, но еще и электромагнитные колебательные системы.
Это означает, что при фотографировании объекта электромагнитная световая волна перекрывается с электромагнитной волной объекта (например, человека). При взаимодействии двух волн (особенно – когерентных волн, т. е. синхронно-упорядоченных) может возникать взаимное ослабление или – взаимное усиление. В оптике это известно как интерференция – чередование светлых и темных колец. Зафиксированную на фотоплёнке волновую (в виде интерференционной картинки) информацию, в принципе, можно «извлечь». Любой фотоснимок является не только простым изображением, но несёт об объекте еще интерференционную волновую информацию.
В волновых уравнениях Гюйгенса и Френеля фигурирует время. Это один из параметров, позволяющих охарактеризовать колебательный процесс. Но вот, к примеру, в волновом уравнении Шредингера, описывающего энергетические переходы в атомах, параметр времени отсутствует, хотя исходные квантово-механические уравнения этот параметр содержали. И волновая оптика, исходно основанная на зависящих от времени волновых уравнениях, тоже даёт в итоге такие уравнения, в которых время не фигурирует. Но как раз именно эти уравнения описывают те оптические волновые явления (дифракции и интерференции света), которые экспериментально наблюдал Юнг и другие физики.
На самом-то деле никакого времени в природе не существует. Время – всего лишь математическая абстракция, удобная для описания физических опытов. Как же так?! Ерунда какая-то! – воскликнет иной эмоциональный читатель, глянув на ручные часы или будильник. Нет, не ерунда. Вот если остановилась стрелка в часах (например, батарейка сдохла), то – где оно время? Нигде. И не существует «вселенских часиков», тикающих сами по себе. Без материальных носителей никакого времени, самого по себе, нет. Время (если отстраниться от его бытового утилитарного смысла) – это всего лишь теоретический параметр, обратный длине.
Из всего этого следует любопытное предположение: волновая интерференция колебаний света и объекта (например, человека) может быть описана уравнением, не содержащим времени. Время как параметр исчезает. Если это так, то между фотоснимком и человеком, с которого сделан снимок, должна существовать волновая интерференционная связь! И совершенно естественно, что эта связь в случае смерти человека как-то меняется. Более того, тот волновой вклад, который дал объект, может, в принципе, нести в себе информацию не только о внешних колебаниях, но и внутренних, т. е. о событиях, воздействовавших на человека.