Выбрать главу

Элементарные частицы и атом

Количество разнообразных элементарных частиц (бозоны, фермионы, лептоны, кварки, нейтрино и т. д. и т. п.) предсказанных теоретиками и обнаруженных (или пока не обнаруженных) экспериментаторами исчисляется нынче великим множеством. При этом ученые относятся к ним как к реальным объектам, исходно существующим в природе.

Но тут уместно вспомнить поучительное мнение выдающегося немецкого физика Вернера Гейзенберга, одного из основателей квантовой механики. Когда студенты стали спрашивать его про внутреннее устройство элементарных частиц, Гейзенберг попросил их взглянуть в окно, смотрящее на здание бассейна, и ответить на вопрос: люди, выходящие из здания одетыми в пальто, в самом бассейне плавают тоже в пальто? Гейзенберг правильно понимал, что элементарные частицы как таковые не существуют. Они возникают лишь в результате взаимодействия. Если перенести его точку зрения с элементарных частиц на атом, то можно сказать, что никаких электронов, протонов и нейтронов в атоме нет. Он из них не состоит. Они возникают лишь в момент взаимодействия атомов с электромагнитным полем или иным излучением, которое исследователь направляет на них. Такой взгляд позволяет обойтись без гипотезы Бора о фиксированных внутриатомных орбитах, по которым вращаются электроны. Бору пришлось постулировать, что отрицательно заряженный электрон может вращаться вокруг положительно заряженного ядра. Этот парадокс, противоречащий закону Кулона о притягивании разноименных зарядов, невозможно преодолеть ни моделью электрона в виде частицы, крутящейся по орбите вокруг ядра, ни моделью о размытой траектории в виде электронного облака. Но, если стать на позицию Гейзенберга, парадокс исчезает. Хотя Гейзенберг по сути прав, но модель Бора более наглядна и удобна для применения.

Формула E = mc2

Глядя на формулу E = mc2, почти любой скажет, что это – великая формула Эйнштейна о связи между энергией и массой. Но на самом-то деле кое-что тут не совсем так.

Во-первых, эту формулу придумал вовсе не Эйнштейн, а Пуанкаре. На это указал В. И. Арнольд в статье «Недооцененный Пуанкаре» (Успехи математических наук, 2006, т.61, № 1, с. 3–24). Причем, Эйнштейн, тщательно изучивший (по совету Минковского) теорию Пуанкаре, никогда не ссылался на первоисточник и только в 1945 году признался в этом. Кстати, знаменитые «преобразования Лоренца» в эйнштейновской специальной теории относительности тоже принадлежат не Эйнштейну и даже не Лоренцу, а всё тому же самому Пуанкаре.

Во-вторых, ничего особенно «великого» в выше приведенной формуле нет. Основываясь на правиле сохранения размерности физических величин, эту формулу легко мог бы вывести любой старшеклассник, причем, ad initio – без каких-либо предварительных сложных математических преобразований. Действительно, если левую часть выразить, к примеру, в джоулях, а массу в правой части в граммах, то коэффициент пропорциональности между ними неизбежно будет иметь размерность квадрата скорости. Это азбука физики. То, что это не просто скорость, а именно скорость света, легко получается путём подстановки численных значений E и m.

Пуанкаре, получив эту формулу в ходе сложных математических преобразований, отнёсся к ней как чистый теоретик, увлеченный лишь математическими изысками. Несомненной заслугой Эйнштейна является то, что он обратил на эту формулу пристальное внимание и осознал, как физик, что из массы можно черпать огромную энергию. Не случайно именно Эйнштейн впоследствии стал одним из создателей ядерной бомбы.

В заключение уместно заметить, что многие «великие» формулы физики довольно тривиальны. Действительно, если какая-либо формула имеет вид функции Y = Z X, то коэффициент пропорциональности Z (размерность и её величина), устанавливающий связь между физическими параметрами X и Y, получается автоматически – путем деления Y на X. К примеру, в знаменитой формуле E = hν энергия E и частота ν связаны через постоянную Планка h, которая тривиальным образом просто выравнивает размерность правой и левой части формулы.

Дарвиновская теория и переходные виды

Еще каких-нибудь три десятка лет назад теория Дарвина была общепринятой и фигурировала в учебниках как закон природы. В наше время стало модным не только критиковать дарвинизм, но и говорить о его полной несостоятельности.

Отсутствие переходных видов при палеонтологических раскопках обычно выдвигается как один из сильнейших аргументов против эволюционной теории Дарвина (кстати, он сам прекрасно понимал «загвоздку» и писал об этом). Но фокус в том, что указанный аргумент исходит из предположения, кажущегося очевидным, что полезные признаки должны постепенно накапливаться и постепенно подвергаться естественному отбору.