Выбрать главу

Проблема заключается в том, что вероятность того, что такси было зелёным (0,85%), выше, нежели надёжность определения свидетелем синего цвета (0,80%). Мы можем получить результат 0,41 даже не используя формулу:

В 100 процентах подобных аварий только 15% были бы совершены такси Синей компании и свидетель правильно бы определил 80% из них, то есть 12 такси. Далее, в 100 процентах подобных аварий 85% могли бы быть совершены такси, принадлежащих Зелёной компании, а свидетель определил бы как синие 20% из них, то есть 17 такси. Таким образом, 29 машин были бы определены как синие, однако только 12 из них покрашены в этот цвет. 12 из 29 дают 0,41.

Парк такси города — 100 автомобилей

85 зелёных такси

15 синих такси

Свидетель идентифицировал 68 такси Зелёной компании как автомобили зелёного цвета

Свидетель идентифицировал 17 такси Зелёной компании как автомобили синего цвета

Свидетель идентифицировал 12 такси Синей компании как автомобили синего цвета

Свидетель идентифицировал 3 такси Синей компании как автомобили зелёного цвета

 

29 такси идентифицированы как синие, но только 12 из них на самом деле синие.

Теперь получим тот же результат с помощью формулы:

Р(Н/D) = Р(Н) * Р(D/Н) / [Р(Н) * Р(D/Н) + Р(~Н) * Р(D/~Н)]

Р(Н/D) = (0,15)*(0,8) / [(0,15) * (0,8) + (0,85) * (0,2)] = 0,41

Менее чем половина испытуемых дали ответ, лежащий между 0,2 и 0,7. Более половины пришли к результату, лежащему вокруг 0,8. То есть они сосредоточились на показаниях свидетеля, не принимая во внимание априорную или базовую вероятность 0,15. Это показывает, что люди склонны переоценивать наглядную информацию, полученную от живого свидетеля, когда она должна комбинироваться с абстрактной вероятностной информацией.

Теперь Вы представляете важность применения теории вероятности в работе полиции и уже умеете применять формулу Байеса, поэтому рассмотрим ещё один случай, имеющий отношение к нашему здоровью (Stanovich, K. E., & West, R. E (1999). Discrepancies between normative and descriptive Models of decision making and the understanding / acceptance principle. Cognitive Psychology, 38, 349-385.):

Представьте себе, что появился некий опасный вирус АВС, вызывающий опасную для жизни болезнь у одного человека из тысячи. Разработан тест, позволяющий точно определить, что у человека, больного этой болезнью, наличествует вирус АВС. Предположим теперь, что тест работает с положительной погрешностью в 5 процентов, то есть он показывает у пяти процентов людей наличие вируса, когда они такового не имеют.

Некто был протестирован и тест показал, что у этого человека наличествует вирус АВС. Какова вероятность, что этот человек действительно болен АВС (предположим для простоты, что нам не известно ничего о его личной жизни и его история болезни нам недоступна)?

Наиболее частый ответ — 95%. Правильный ответ — примерно 2%. Здесь также опрошенные переоценивают наглядный результат теста и недооценивают базовую вероятность. Снова перед применением формулы немного логики, чтобы увидеть решающее значение базовой вероятности. У нас есть данные о том, что из тысячи человек страдает от АВС в действительности один. Это означает, что если остальные 999 человек будут протестированы на АВС, тест покажет, что больны примерно 50 человек (0,5 * 999), поскольку тест имеет пятипроцентную погрешность. Таким образом, у 51 человека тест показывает наличие вируса АВС, но только один из них действительно болен — примерно 2%. Рассчитаем теперь по Байесу:

Р(Н/D) = Р(Н) * Р(D/Н) / [Р(Н) * Р(D/Н) + Р(~Н) * Р(D/~Н)]

Р(Н/D) = (0,001)*(1,0) / [(0,001) * (1,0) + (0,999) * (0,05)] = 0,0198

В принципе люди не должны обязательно знать наизусть формулу Байеса (хотя это, конечно, никому и не вредит). Желательно, однако, мыслить в направлении Байеса. В частности, делая спонтанные предположения о вероятностных явлениях, не забывать о значении базовой вероятности.

Научиться думать «по-Байесовски» можно, хотя это и не столь просто. Мы с вами рассмотрели нарушение рациональности при игнорировании базовой вероятности. Этим, однако, нарушения не исчерпываются. До сих пор мы использовали формулу в терминах апостериорной вероятности основной гипотезы относительно полученных новых данных. Однако формулу можно переписать в терминах апостериорной вероятности альтернативной гипотезы относительно полученных новых данных. Если при этом разделить одну формулу на другую (опустим детали), то мы получим наиболее распространённый вариант формулы:

 Р(Н/D)      Р(D/Н)        Р(Н)

----------- = ----------  * -------------

Р(~Н/D)    Р(D/~Н)      Р(~Н)

Теперь мы имеем дело с тремя отношениями:

- апостериорная вероятность основной гипотезы (Н) после получения новых данных (D);

- так называемое отношение правдоподобия, возникающее от деления вероятности полученных данных для основной гипотезы на вероятность полученных данных для альтернативной гипотезы;

- априорная вероятность основной гипотезы.

Априорная вероятность: Р(Н/D) / Р(~Н/D).

Отношение правдоподобия: Р(D/Н) / Р(D/~Н).

Апостериорная вероятность: Р(Н) / Р(~Н).

Что нам всё это даёт? Очень часто, оценивая отношение правдоподобия, люди недооценивают вероятность того, что основная гипотеза ложная. Эта неспособность «думать от противного» приводит к серьёзным ошибкам рациональности — неспособности увидеть, что истинной является альтернативная гипотеза.

Дохерти и Майнэтт (Doherty, M. E., & Mynatt, C. (1990). Inattention to P(H) and to P(D/~H): A converging operation. Acta Psychologica, 75, 1-11.) предлагали испытуемым представить, что они являются медиками и исследуют пациента, страдающего от красной сыпи. Испытуемые должны были установить, болеет ли пациент «Дигирозой». Они могли получить для этого карточки со следующей информацией:

- Процент людей, страдающих Дигирозой.

- Процент людей, не болеющих Дигирозой.

- Процент людей, страдающих Дигирозой и имеющих красную сыпь.

- Процент людей, не страдающих Дигирозой и имеющих красную сыпь.

Эта информация соответствует четырём основным элементам формулы Байеса: Р(Н), Р(~Н), Р(D/Н), Р(D/~Н). Поскольку Р(Н) и Р(~Н) дополняют друг друга, для расчёта апостериорной вероятности требуется только три элемента. Однако Р(D/~Н) — процент людей, не страдающих Дигирозой и имеющих красную сыпь — необходимо выбрать для расчёта по формуле Байеса. Тем не менее, 48% испытуемых её не выбирали! Не принятие во внимание Р(D/~Н) не являются простым упущением мышления. Если Ваш врач не рассматривает альтернативные гипотезы, Ваши шансы на излечение ничтожно малы…

Проблема альтернативных гипотез является актуальной не только для врачей. Рассмотрим ещё одно исследование Майнэтта, Дохэрти и Дрэгэна (Mynatt, C. R., Doherty, M. E., & Dragan, W (1993). Information relevance, working memory, and the consideration of alternatives. Quarterly Journal of Experimental Psychology, 46A, 759-778.). Ситуация выглядит следующим образом (попытайтесь решить самостоятельно):

Ваша сестра два года назад купила автомобиль, но Вы не помните какой (они так похожи друг на друга!). Но это либо авто марки А, либо марки В. Вы, однако, помните, что машина сжирает один литр бензина на каждые 25 км и что за эти два года сестра ни разу не обращалась к автомеханику. Вы располагаете карточкой со следующей информацией:

65% машин марки А расходуют один литр бензина на 25 км.

Имеются ещё три дополнительные карточки:

1.Процент машин марки В, которые расходуют один литр бензина на 25 км.

2.Процент машин марки А, у которых не было никаких проблем с механикой в течении двух лет эксплуатации.

3.Процент машин марки В, у которых не было никаких проблем с механикой в течении двух лет эксплуатации.

Вы можете выбрать только одну из дополнительных карточек. Какую Вы выберите, чтобы определить марку машины, на которой ездит Ваша сестра? Как Вы видите, здесь мы имеем дело с двумя гипотезами — сестра владеет машиной марки А (Н1), и сестра владеет машиной марки В (Н2), причём эти гипотезы взаимоисключают друг друга. Мы имеем дополнительные данные:

- машина потребляет один литр бензина на 25 км (D1);

- в течение двух лет не было проблем с механикой (D2).

Вы уже имеете информацию относительно машин марки А, тратящих один литр бензина на 25 км (Р(D1/Н1)). Здесь возможны два отношения правдоподобия: Р(D1/Н1) / Р(D1/Н2) и Р(D2/Н1) / Р(D2/Н2). Однако Вам позволено выбрать только одну карточку, информацию которой можно добавить к уже имеющейся у Вас: Р(D1/Н1).