Выбрать главу

Идея черных мини-дыр настолько привлекательна, что с ее помощью пытались объяснить даже, казалось бы, такое далекое от релятивистской астрофизики событие, как падение Тунгусского метеорита. В свое время была опубликована работа, где утверждалось, что катаклизм в районе Подкаменной Тунгуски произошел в результате столкновения мини-дыры с Землей! Идея эта, конечно же, чересчур экстравагантна, но она, по всей видимости, все-таки «уступает» идеям связанным с взрывом в атмосфере Земли космического корабля пришельцев.

Все, о чем мы говорили сейчас, относится к области теоретической астрофизики. Но найдены ли черные дыры в природе?

Эти вопросы стоят сегодня с особенной остротой на повестке дня. Ведь черные дыры настолько часто привлекаются для объяснения различных явлений в космосе, что они — настоящий якорь спасения современной астрофизики. Более того, их отсутствие просто выбило бы почву из-под ног всей астрономии. Но как их искать?

Светящееся вещество в окрестностях черной дыры.

Если черная дыра представляет собой одиночный объект, ее практически невозможно заметить. Лишь в том случае, если она работает как гравитационная линза, мы могли бы сделать кое-какие выводы. Но пока, к сожалению, на роль гравитационных линз претендуют лишь массивные галактики.

Наиболее реальный способ обнаружения черных дыр — исследование их взаимодействия с окружающей материей. Понятно, что такое взаимодействие будет наиболее выпукло проявляться в двойных системах.

Вообще говоря, более половины звезд нашей Галактики входят в состав двойных систем. Поэтому вполне реально предположение о существовании двойных систем, содержащих в качестве одного из компаньонов черную дыру. Астрономы поначалу пытались определить наличие черной дыры в двойных системах по особенностям движения видимого компонента, но в результате всегда оказывалось, что второй компонент в системе белый карлик или нейтронная звезда. Поэтому-то наиболее обещающий метод — поиск активности черных дыр, которая проявляется во взаимодействии ее с веществом.

Мы уже говорили об аккреции вещества на нейтронную звезду, на белый карлик, на черную дыру, читатель знает, что это такое. Тем не менее вкратце напомним основные особенности этого процесса.

Пусть в состав двойной системы входит обычная звезда главной последовательности и черная дыра. Она будет перетягивать на себя вещество видимого компонента. Из-за вращения этих звезд вокруг общего центра тяжести это вещество не будет падать на дыру «по прямой», а образует аккреционный диск. На внешнем краю диска температура газа сравнительно невелика, порядка температуры самой звезды. Но по мере приближения частичек газа к горизонту событий температура за счет трения при вращении диска значительно повышается, достигая десятков миллионов градусов. Оценки показывают, что в таком процессе выделяется огромное количество энергии — до 10 процентов от mc2.

Нагретый до чудовищных температур газ излучает в рентгеновском диапазоне, и поэтому советские ученые Я. Зельдович, И. Новиков, И. Шкловский предложили в 1966–1967 годах искать рентгеновские источники в составе тесных двойных систем. Ясно, что характеристики таких источников должны отличаться от рентгеновского излучения вращающейся нейтронной звезды, входящей в состав двойной системы. Такая звезда, как мы уже знаем, дает узконаправленное рентгеновское излучение прожекторного типа с изменяющимся периодом.

В 1970 году спутник «Ухуру» обнаружил на небе мощный источник рентгеновского излучения в созвездии Лебедя. Источник этот получил название Лебедь Χ-1. Мощность его излучения в рентгеновском диапазоне в тысячи раз превосходила полную (по всему диапазону волн) светимость Солнца. В следующем, 1971 году удалось выяснить, что этот источник совпадает с горячим голубым сверхгигантом НДЕ 226868. Но выяснилось, что объект НДЕ 226868 — двойная звезда, а голубой сверхгигант имеет невидимого компаньона. Мы знаем, что именно двойные системы представляют уникальную возможность взвешивания звезд. И вот оказалось, что невидимый компаньон голубого сверхгиганта весит примерно 8–11 солнечных масс. Эта величина существенно превышает предел устойчивости и белых карликов, и нейтронных звезд. Очень важно, что все характеристики излучения Лебедя Χ-1 резко отличаются от рентгеновского излучения пульсаров.

Таким образом, мы имеем на сегодня два существенных аргумента в пользу присутствия в созвездии Лебедя черной дыры.