Уже чисто интуитивно напрашивается ответ на вопрос о природе подобных образований. Если каша кипит, то мы должны иметь дело с конвекцией.
И действительно, если мы начнем путешествие вместе с квантами излучения из центральных районов Солнца к его поверхности, то сначала ни кванты, ни воображаемый путешественник не будет испытывать заметных трудностей. Температуры там высоки, непрозрачность мала, и кванты без труда «просачиваются», диффундируют к поверхности.
С понижением температуры начинается рекомбинация электронов и ядер атомов в ионы, которые могут уже взаимодействовать с фотонами, в частности, поглощать их. Ясно, что непрозрачность при этом сильно возрастает.
Однако звезда должна «сбрасывать» энергию, выделяющуюся в ее недрах, если бы этого не было, она просто бы взорвалась. И вот здесь в игру вступает другой, уже известный нам механизм переноса энергии — конвекция, когда горячие элементы всплывают и отдают свое избыточное тепло окружающей среде, подогревают ее. Ну а вещество, которое опускается при конвективном перемешивании, холоднее окружающей среды, почему и кажется (при тех температурах, с которыми мы имеем дело) более темным. Поэтому можно считать, что разделяющие гранулы темные полосы — участки поверхности фотосферы.
Конвективная зона на Солнце начинается выше уровня, где значение радиуса достигает 0,85 полного радиуса Солнца. Здесь эффективность конвекции очень велика, она переносит почти весь поток солнечной энергии, хотя сама эта зона содержит всего около двух процентов массы Солнца.
Итак, грануляция фотосферы — типичное конвективное движение. Скорость этого движения около 300 метров в секунду, разница в температурах между светлыми и темными участками примерно 300 K.
В конвективной зоне происходит еще один удивительный процесс, имеющий большое значение не только для фотосферы, но и для хромосферы, и для короны Солнца. Что же это такое?
Еще раз вернемся к явлениям конвекции и грануляции. На первый взгляд может показаться, что и тот, и другой процессы должны быть совершенно хаотическими. Образование каждой ячейки, так же как и в кипящей рисовой каше, должно происходить случайно. Оказалось, однако, что это не так. В 1960 году было обнаружено, что вся поверхность в некоторых участках слоя, расположенного над верхней границей конвективной зоны, поднимается и опускается относительно некоторого среднего положения, смещаясь при этом на высоту примерно 25 километров. Причем горизонтальный размер области, которая поднимается и опускается, достигает 50 тысяч километров!
Долгое время это явление не находило объяснения. В последние годы картина все-таки прояснилась. Оказалось, что Солнце, вернее — его конвективная зона, работает как гигантский орган, генерируя акустические волны. Этот факт имеет огромное значение не только потому, что в руках астрофизиков появился новый метод изучения и фотосферы и конвективной зоны Солнца. «Пятиминутные» колебания переносят энергию в верхние слои атмосферы Солнца, определяя во многом происходящие в них процессы.
В последние годы в Крымской обсерватории под руководством академика А. Северного открыты более длиннопериодные колебания Солнца. Они носят глобальный характер. Здесь уже двигается вся «поверхность» Солнца в целом. Период этих колебаний составляет 160 минут.
Так как колебания охватывают весь раскаленный газовый шар, звезду, они, по всей видимости, также могут немало сказать о структуре недр Солнца. Однако объяснить природу этих колебаний сегодня нелегко, даже не учитывая причин их возбуждения. Более того, в рамках современных представлений о внутреннем строении Солнца и протон-протонном цикле внутри его теоретические оценки дают значение периода колебаний нашей звезды не 160, а 130 минут.
Таким образом, не только проблема солнечных нейтрино омрачает настроение теоретиков. Один из крупнейших специалистов в области исследования Солнца, А. Северный, полагает даже, что совокупность нерешенных вопросов может привести к «новому фундаментальному пересмотру наших представлений о внутренних процессах на Солнце». Он отмечает, что на сегодняшний день есть три «трещины» в фундаменте знаний о нашем светиле. О двух из них мы уже знаем. Это проблема борных нейтрино (в реакциях их образования участвует бор) и только что упоминавшиеся 160-минутные колебания.