Выбрать главу

Здесь следует вкратце остановиться на одном важном обстоятельстве. Мы уже говорили о существенном ограничении наблюдений в видимом диапазоне: свет заметно поглощается межзвездной средой. В то же время в видимом диапазоне земная атмосфера довольно прозрачна. Атмосфера очень сильно «режет» коротковолновую часть спектра, начиная с ультрафиолетового излучения; что касается инфракрасного (ИК) диапазона, то молекулы воды и углекислого газа, всегда присутствующие в атмосферном воздухе, поглощают в этом диапазоне довольно сильно. К счастью, между полосами молекулярного поглощения воды и углекислоты есть узкие окна, в которых можно вести наблюдения. Кроме того, если поднять прибор на аэростате, шаре, зонде, задача наблюдения существенно облегчается. В ряде случаев можно проводить наблюдения в ИК-диапазоне даже с высокогорных обсерваторий. Что касается радиодиапазона, то атмосфера практически прозрачна для радиоволн длиной от 1 сантиметра до 20 метров. Теперь ясно, что сам факт поглощения электромагнитных колебаний земной атмосферой в значительной мере стимулировал проведение спектральных измерений на больших высотах и в космосе. В настоящее время есть проекты размещения в космосе и оптического телескопа, причем с довольно большим зеркалом, диаметром более двух метров. Отсутствие атмосферы даже для видимого диапазона даст огромный выигрыш при наблюдениях.

Но вернемся к ИК-астрономии. Можно без преувеличения сказать, что измерения в ИК-диапазоне внесли решающий вклад в исследование химического состава атмосфер планет. Благодаря именно этим измерениям нам удалось узнать, что атмосфера Венеры состоит не только из углекислого газа, она содержит такие экзотические молекулы, как угарный газ, хлористый и фтористый водород, а в облаках Венеры присутствует серная кислота. В атмосферах Венеры и Марса удалось обнаружить пары воды и определить их количество, в облаках Юпитера нашли аммиак, узнали, из чего состоят кольца Сатурна, оценили химический и минералогический состав грунта Луны, Марса, астероидов, спутников Юпитера, Сатурна, Урана, Нептуна.

Наблюдая Юпитер и Сатурн, удалось открыть внутренние потоки тепла от этих планет. Другими словами, оказалось, что и Юпитер и Сатурн отдают в пространство больше тепла, чем получают его от Солнца.

С помощью ИК-измерений удалось сделать поразительные открытия не только в мире планет, но и в мире звезд. Именно здесь и сказалось решающее преимущество ИК-излучения перед видимым светом: пыль и газ в межзвездном пространстве поглощают видимый свет во много раз сильнее, чем излучение в ИК-диапазоне. С помощью измерений в инфракрасном диапазоне были открыты так называемые ИК-звезды, которые в обычные телескопы были видны как объекты 20m (20-й звездной величины), а в ИК-диапазоне они светили как объекты 0m. Разница гигантская — в 20 звездных величин!

Температура этих звезд оказалась очень низкой (по звездным меркам) — всего 2000 К. В атмосферах многих холодных звезд есть вода и окись углерода. Около некоторых звезд, и молодых и старых, существуют пылевые оболочки, а совсем недавно было установлено, что есть звезды, и среди них одна из самых близких к нам — Вега, окруженные пылевыми дисками. Возможно, эти образования и есть знаменитые протопланетные туманности. Быть может, по соседству с нами вскоре отыщут звезды, имеющие планетные системы!

С помощью ИК-астрономии были открыты протозвездные объекты и загадочные тела промежуточной массы между звездами и планетами. Один из них имеет массу в десять раз большую, чем Юпитер, но соответственно меньшую, чем наш желтый карлик — Солнце.

Астрофизики, используя возможности ИК-астрономии, впервые получили изображение центра нашей Галактики. Была изучена структура этого района, и удалось обнаружить, что в центре нашей звездной системы расположен точечный источник инфракрасного излучения. Но что это такое? Сегодня мы не можем ответить на этот вопрос. Мир астрономии поистине неистощим на сюрпризы.

Новые сведения об окружающем мире идут не только с длинноволнового конца спектра. Коротковолновый диапазон в этом смысле старается «не отставать» от радиоволн и ИК-излучения. Но здесь уже нужно учесть то обстоятельство, что научную информацию ученые получают в этом диапазоне длин волн только с больших высот и из космоса: атмосфера задерживает, «режет» коротковолновую, высокоэнергичную часть спектра.