Выбрать главу

На страницах оригинальных статей и обзоров все чаще появляется новый термин — нейтринная астрономия. Действительно, эти неуловимые из-за своего чрезвычайно слабого взаимодействия с веществом частицы могут дать исключительно важную информацию о внутреннем строении звезд, в том числе и нашего Солнца. Изучение реликтовых нейтрино, оставшихся после Большого Взрыва, принесло бы неоценимую информацию о первых мгновениях жизни нашей Вселенной. Но регистрация нейтрино — задача исключительной сложности. Это, кстати, мы увидим, когда речь пойдет о нашем Солнце и проблеме солнечных нейтрино. Тем не менее многие ученые считают, что нейтринная астрономия уже к концу этого века скажет свое веское слово. И мне кажется, что это будет очередная порция сюрпризов и загадок, которые природа до поры до времени держит про запас, а потом вдруг дает возможность прикоснуться к своим тайнам, то ли, чтобы подхлестнуть любопытство человека, то ли лишний раз щелкнуть его по носу.

Есть еще один очень интересный потенциальный источник информации из космоса. Это гравитационные волны — следствие ОТО. Большой бум в науке возник более 15 лет тому назад, когда бывший американский адмирал, большой энтузиаст астрофизики Д. Вебер объявил о том, что ему впервые удалось зарегистрировать таинственные гравитационные волны. Аппаратура Вебера состояла из алюминиевых цилиндров весом 4 тонны каждый.

Если на цилиндр подействует гравитационная волна, в нем должны возникнуть собственные колебания с частотой 1600 герц. Эти колебания можно регистрировать чувствительными приборами. Сначала Вебер использовал для измерения лишь один цилиндр. В этом случае, естественно, нельзя было дать никакой гарантии в том, что колебания цилиндра вызваны именно гравитационными волнами, а не какими-либо другими, более земными причинами. Поэтому-то и появилась вторая установка с гигантским алюминиевым цилиндром в Иллинойсе, чтобы можно было регистрировать гравитационные волны одновременно в разных точках земной поверхности.

На минуту отвлечемся от эксперимента Вебера и попытаемся понять, что такое гравитационные волны. Нам удастся это лучше всего, если мы вспомним два обстоятельства. Первое: теория электромагнитного поля и теория гравитации ОТО — две классические теории, оперирующие с силами бесконечного радиуса действия. Второе: знаменитый опыт Г. Герца с испусканием электромагнитных волн.

Теперь ясно, что, так же как и в классической теории электромагнитного поля, где колебания электрического заряда будут вызывать электромагнитные волны, в ОТО колебания массивного тела будут вызывать гравитационные волны. Источником гравитационных волн поэтому может быть процесс коллапса звезды в черную дыру, взрывы Сверхновых, тесные двойные системы с массивными компаньонами.

Но трудность состоит в том, что даже при наличии двойных систем и других источников гравитационных волн силы, вызываемые этими волнами, ничтожны. Если, например, Солнце находилось бы в системе двойной звезды и воображаемый компаньон, имеющий такую же массу, как Солнце, располагался на расстоянии одной астрономической единицы от нашего светила, гравитационное излучение составило бы всего 10–14 от мощности электромагнитного излучения этих звезд. Именно поэтому, когда в 1969 году Вебер сообщил о том, что удалось зарегистрировать гравитационные волны, идущие от района центра Галактики, ему не поверили.

Результаты Вебера большинству ученых кажутся неубедительными и малоправдоподобными, поскольку мощность источника гравитационных волн в случае достоверности регистрации слишком велика. Для обеспечения подобной мощности должна существовать черная дыра, поглощающая в год массу вещества, равную нескольким тысячам масс Солнца.

Построенные позже более чувствительные, чем у Вебера, детекторы не зарегистрировали до сих пор гравитационного излучения. Тем не менее ОТО предсказывает это излучение, а некоторые астрономические наблюдения как будто указывают на существование этого излучения.

Что здесь имеется в виду? ОТО предсказывает, что в тесных двойных системах непрерывное излучение энергии в виде гравитационных волн должно изменять орбиты компаньонов системы и приводить, в частности, к уменьшению периода обращения.

Наблюдения за пульсаром PSR 1913+16 прекрасно согласуются с вычислениями, выполненными на основе ОТО. Если бы уменьшение периода можно было бы однозначно связать с гравитационным излучением, результаты наблюдений за PSR 1913+16 явились бы очередным триумфом ОТО и их с полной определенностью можно было бы трактовать как ясное доказательство гравитационного излучения. Но… к сожалению, уменьшение периода может быть вызвано и другими причинами.