Выбрать главу

Сам Ольберс пытался спасти положение, «вводя» в космическое пространство поглощающую свет среду, но на самом деле в этом случае поглощающий газ должен был бы нагреваться до высокой температуры и излучал бы почти столько же энергии, сколько поглощал. Парадокс оставался неразрешимым.

В чем же дело?

Цепь рассуждений Ольберса о яркости неба, равной примерно яркости нашего Солнца, безупречна. Законы Ньютона незыблемы. Может быть, Вселенная устроена не так, как она виделась Ньютону?

Вселенная расширяется

Заглянуть глубже в тайны мироздания, чем это сделал Ньютон, долгое время казалось невозможным. Лишь в начале нашего века в 1915 году появилась работа А. Эйнштейна, которая в конце концов заставила пересмотреть систему мира Ньютона, и, заметим, самым радикальным образом. Здесь нельзя не вспомнить уже упоминавшуюся эпитафию А. Попа, на которую после появления работ Эйнштейна «вышло дополнение»:

…Но сатана недолго ждал реванша — Пришел Эйнштейн, и стало все, как раньше.

Вряд ли здесь уместно выражение «стало все, как раньше». Но совершенно ясно одно: стало все гораздо интереснее.

Знаменитые уравнения Эйнштейна — основа общей теории относительности — были опубликованы в 1916 году. Они подарили нам новый мир, существенно отличающийся от мира Ньютона. Как образно сказал один из крупнейших современных физиков, Дж. Уилер, в общей теории относительности пространство «говорит» материи, как ей двигаться, а материя «указывает» пространству, как ему искривляться.

Нам сейчас нужно обязательно запомнить чрезвычайно важное обстоятельство, заключающееся в том, что специфические свойства пространства-времени, которые естественно могут быть объяснены при введении такого понятия, как кривизна, проявляются лишь в сильных гравитационных полях. В локальных областях справедливо классическое приближение Ньютона. Кстати говоря, закон всемирного тяготения Ньютона легко выводится из ОТО (как сейчас называют физики общую теорию относительности). «Самая красивая из всех существующих физических теорий», — писали об ОТО советские физики, академики Л. Ландау и Е. Лифшиц.

Поскольку речь у нас сейчас пойдет о космологических проблемах, об истории Вселенной, следует попытаться понять хотя бы основные выводы и следствия из ОТО. Это нелегкая задача, поскольку ОТО имеет дело с четырехмерным пространством, где одной из координат является время.

Трудность состоит в том, что четырехмерный мир нельзя представить себе наглядно. Для нас число «наглядных» измерений не превышает трех. Двухмерна плоскость, трехмерен шар, куб, но как представить себе четырехмерие? Математики имеют дело с пространствами и больших размерностей, но для нас, как, впрочем, и для них, это абстракции.

Четырехмерный мир Эйнштейна, конечно же, не абстракция. Дело в том, что мы живем геометрически в трехмерном пространстве, но все физические процессы в этом мире связаны со временем, а сам ход времени для наблюдателя зависит от свойств пространства, от скорости процессов. Поэтому время связано в мире Эйнштейна с геометрией, а геометрия со временем. Недаром Уилер предложил называть теорию Эйнштейна геометродинамикой.

Геометродинамика, ОТО предсказывает удивительные явления, которые должны происходить в нашем мире: изменение темпа течения времени, искривление лучей света в сильных полях тяготения и многое другое. Но нас сейчас будут интересовать несколько иные вещи.

Обратимся к основному отличию ОТО от классической физики Ньютона при рассмотрении Вселенной, мира. Об этом отличии лучше всего сказал сам Эйнштейн: «Потребовалась жестокая борьба (для Ньютона), чтобы прийти к понятию независимого и абсолютного пространства, неоценимому для развития теории… Выводы Ньютона при современном ему состоянии науки были единственно возможными и, в частности, единственно плодотворными.

…Не менее напряженные усилия потребовались для того, чтобы впоследствии преодолеть это понятие (абсолютного пространства)».

Итак, пространство не абсолютно, оно динамично, оно живет. И самым важным свойством уравнений Эйнштейна, по крайней мере для космологии, является то, что они позволяют представить себе, как жила, живет и будет жить в дальнейшем наша Вселенная.

Начиная рассказ об этом, нельзя не подчеркнуть, что Эйнштейн на первых порах намеренно искал такое решение своих уравнений, которое «давало» бы однородную и статичную Вселенную. То есть сначала и Эйнштейн, так же как и Ньютон, оказался в плену идеи, если так можно выразиться, «статичной вечности».