Здесь происходят очень интересные вещи. Все начинается с того, что ядро углерода захватывает протон (ядро атома водорода) и превращается в радиоактивный азот, который, распадаясь, дает более тяжелый изотоп углерода. Этот изотоп тоже захватывает протон и превращается в обычный азот. Но и азот стремится захватить ядро водорода, тем более что недостатка в водороде внутри Солнца нет.
Поглотив протон, ядро азота превращается в радиоактивный кислород, а тот, распадаясь, — в стабильный изотоп азот-15. Азот-15 опять захватывает протон. Но даже в недрах Солнца жадность наказуема: распухшее ядро азота-15 с лишним протоном не в состоянии удержать захваченное и распадается на исходное ядро атома углерода-12 и ядро атома гелия.
В результате начавшее всю цепочку захвата ядро углерода-12 осталось «при своем интересе» и вышло из игры, а из четырех захваченных ядер водорода образовалось ядро гелия. Снова работает соотношение E = mc2, и разность масс между четырьмя протонами и ядром гелия превращается в энергию.
В отличие от первого механизма в различных этапах реакций С – N – О-цикла участвуют атомы углерода, кислорода и азота. Именно поэтому его и назвали С – N – О-цикл. Но если за счет протон-протонного процесса Солнце получает 98 процентов своей энергии, то за счет углеродно-азотно-кислородного только 2 процента.
Нужно сказать, что для звезд более массивных, чем Солнце, роль С – N – О-цикла значительно существеннее. Понятно, что кулоновский барьер для этой реакции выше, чем в первой реакции протон-протонного цикла. Там реагировали отдельные протоны, а здесь во взаимодействие приходят ядра. Поэтому в более массивных звездах, где температура выше, чем у Солнца, эти реакции будут идти более эффективно.
Итак, и в протон-протонном, и в С – N – О-цикле конечным продуктом термоядерных реакций является гелий. Другими словами: водород звезд выгорает, выгорает в одних случаях медленно, в других побыстрее. Что же происходит со звездами по мере выгорания в них водорода, из какого источника они вновь черпают энергию?
Прежде чем ответить на этот вопрос, следует обратить внимание на термоядерные реакции с легкими элементами — литием, бериллием и бором. Их особенность состоит в том, что и литий, и бериллий, и бор «выгорают» в процессе реакций. Мы видели, что в С – N – О-цикле ядра углерода «возобновляются». Они служат здесь как бы катализаторами реакции. Легкие же элементы вместе с водородом, сгорая в термоядерном котле звезды, быстро исчезают, превращаясь в гелий. Кстати, именно поэтому легких элементов (исключая водород и гелий) в звездах и на Солнце крайне мало.
Когда основное топливо звезды — водород — выгорает, источником энергии становится так называемый тройной альфа-процесс. Эта термоядерная реакция идет при температуре около ста миллионов градусов. Сначала две α-частицы при столкновении на короткое время образуют неустойчивый изотоп бериллия-8. Он, конечно, может распасться вновь на два ядра гелия-4. Но в том случае, если за какой-то очень короткий промежуток времени он успеет столкнуться еще с одной α-частицей. Получится стабильный изотоп углерода-12, и выделится большое количество энергии. Таким образом, в этой реакции сгорает уже не водород, а гелий.
В обычных звездах «главной последовательности» температура недостаточна для «запуска» тройного α-процесса, но в некоторых специальных случаях именно этот механизм может быть основным источником энергии. Об этих случаях мы поговорим позже, а сейчас зададимся естественным вопросом: откуда в нашем мире появились химические элементы?
О том, как во Вселенной образовались водород и гелий, мы уже говорили. Этот вопрос решается легко и непринужденно в рамках модели Большого Взрыва. Но как объяснить огромное обилие элементов в менделеевской таблице? Почему, к примеру, в космосе очень мало лития, бериллия и бора? Почему существует так называемый железный пик? (Обилие элементов группы железа.) Вопросов немало, и решение их сильно зависит от того, какие температуры достигаются в недрах звезды.
Прежде всего возникает идея о последовательном построении тяжелых элементов из более легких путем присоединения нейтрона к ядру легкого элемента. Такой механизм называется S-процессом. Но откуда берутся нейтроны?
Если в звезде достигнута температура порядка 100 миллионов градусов, в ней начинает идти важная реакция: