Тогда, поскольку принцип Паули нарушать нельзя, электроны, находящиеся в одном и том же объеме, должны отличаться друг от друга, должны обладать различными скоростями. Чем больше электронов в одном состоянии, тем больше отличаются их скорости. Электронов много, и все они движутся с разными скоростями в силу принципа Паули. В обычном газе изменение температуры влияет на скорости частиц. В нашем же, электронном газе, где работает принцип Паули, нагревание или охлаждение практически не повлияет на скорости электронов.
Подобный газ называется вырожденным электронным газом. В принципе его можно охладить до абсолютного нуля, а движение электронов все равно будет продолжаться. Поэтому и давление вырожденного газа мало зависит от температуры частиц и определяется лишь плотностью.
Интересно, что в недрах обычных звезд газ не вырожден. «Критическая» плотность вырождения для «нормальной» звезды с температурой в центре около 10 миллионов градусов должна быть больше 1000 г/см3. Как мы знаем, такие плотности там не достигаются. Белые карлики, эти удивительные звезды, обладают еще некоторыми необычными свойствами. Во-первых, их масса тем больше, чем меньше радиус. Во-вторых, существует некоторое предельное значение массы, при котором давление вырожденного газа уже не может сопротивляться воздействию гравитации. Теория показывает, что белых карликов с массой больше чем 1,43 М в природе существовать не может.
Мы забыли сказать несколько слов о причинах светимости белых карликов. Это отнюдь не праздный вопрос. Ведь водорода в них нет, он весь сгорел, а другие реакции в центре карлика, как мы видели, не идут. Но светимость-то, хоть и небольшая, есть. В чем здесь дело?
Во-первых, ядерные реакции могут идти в «атмосфере» белого карлика. Водород из межзвездной среды может попадать на его поверхность и служить затем ядерным горючим в тонком приповерхностном слое звезды. Во-вторых, белый карлик сам по себе имеет огромные запасы тепловой энергии. Время его охлаждения — сотни миллионов лет.
Белые карлики — одно из самых удивительных творений природы. Но, кроме всего прочего, они играют существенную роль в проблемах звездной эволюции. К этому вопросу мы вернемся несколько позже, а сейчас посмотрим снова на изотермическое ядро красного гиганта. Теперь нетрудно видеть, что оно имеет все свойства белого карлика! Но такая сложная структура звезды не может не вызвать следующего вопроса: каким образом в центре гиганта мог образоваться белый карлик — звезда с удивительными свойствами?
Для ответа на поставленный вопрос, хотя на первый взгляд это может показаться и непоследовательным, посмотрим, что будет с нашим Солнцем через миллиарды лет. Ведь и Солнце начнет когда-нибудь стареть. Как это будет происходить?
Для начала вернемся к протон-протонному циклу. Мы уже говорили о том, что водород в центральных частях Солнца потихоньку выгорает. Сегодняшние оценки говорят, что водородной пищи Солнцу хватит еще на несколько миллиардов лет. В течение всего этого огромного промежутка времени в центре Солнца водород постепенно превращается в гелий.
Планетарная туманность NGC 6781.
Планетарная туманность в Лире.
Гелий — нечто вроде золы в огромной ядерной топке Солнца. Только если из обычной печки золу можно убрать, то гелий накапливается, и таким образом у Солнца образуется гелиевое ядро. Процессы слияния ядер водорода в гелий, изменение химического состава приводят в конце концов к тому, что облегчается выход квантов света — фотонов к поверхности звезды, и поэтому светимость Солнца постепенно увеличивается.
Ядерные реакции по протон-протонному механизму уже не смогут идти в ядре, состоящем из гелия, а будут происходить лишь вокруг ядра, как бы в его оболочке. Гелий, образующийся в оболочке, добавляется к ядру, и его масса увеличивается.
Ядро, естественно, начинает сжиматься. Но сжимается оно очень медленно, и энергия сжатия поэтому не успевает выходить из него наружу. И все-таки температура ядра очень медленно повышается. Почему?
И раньше во время нормальной своей работы в центре Солнца плотности газа были велики: более 100 граммов в одном кубическом сантиметре. Газ, который потяжелее воды в сотню с лишним раз! А в процессе сжатия гелиевого ядра этот газ потихоньку начинает вырождаться. Свойства ядра становятся близкими к свойствам металлов. Ну а это означает, что ядро очень хорошо проводит тепло, то есть имеет высокую теплопроводность. Именно поэтому, хоть ядро и сжимается, температура его повышается очень медленно, за счет высокой теплопроводности оно успевает отдать «излишки» тепла наружу.