Выбрать главу

Затем в результате падения газа на черную дыру образуется аккреционный диск, вместе со всеми сопутствующими явлениями, которые могут объяснить экзотические особенности ядер галактик и квазаров. О механизме «работы» аккреционного диска мы уже вкратце говорили. Более подробно этот процесс будет рассмотрен в следующей главе.

Следует ли из всего вышесказанного, что астрофизика полностью разобралась и с квазарами, и с галактиками? Мне кажется, что у читателя вряд ли сложилось подобное впечатление. Самая главная трудность состоит в том, что большая часть моделей построена на кончике пера, «руками». Ведь не следует забывать, что черные дыры до сих пор еще не открыты. Более того, существуют и альтернативные гипотезы, в частности, гипотеза академика В. Амбарцумяна, согласно которой в ядрах галактик находится особая, дозвездная форма материи, так называемые Д-тела. Бесспорно, успехи в решении этих увлекательных проблем будут обусловлены в первую очередь развитием наблюдательной техники в астрономии.

Звёзды

Небесный глобус. 1584 год.

Характеристики звезд

Более 90 процентов видимого вещества Вселенной сосредоточено в звездах. Именно звезды и планеты были первыми объектами астрономических исследований. Однако процессы эволюции звезд и их внутреннее строение были поняты сравнительно недавно. Начальной точкой в создании теории строения звезд можно считать 1926 год — год выхода в свет книги А. Эддингтона «Внутреннее строение звезд».

Астроном-наблюдатель видит абсолютное большинство звезд даже в самые сильные телескопы в виде точечных источников света. Пожалуй, лишь диск нашего Солнца позволяет реально наблюдать некоторые процессы, происходящие на поверхности звезды. Одной из важнейших характеристик звезды является ее абсолютная величина (не имеющая, конечно, никакого отношения к геометрическим размерам). Она характеризует реальную светимость звезды. О том, как определяются расстояния до звезд, мы уже говорили. Очень важную информацию о звездах, об их химическом составе, температуре приносит изучение спектров. Спектральные классы звезд обозначаются буквами латинского алфавита О, В, А, F, G, К, М, R, N. Это так называемая Гарвардская классификация.

Интересно, что английские студенты, чтобы запомнить последовательность букв, обозначающих классы звезд, придумали удобное мнемоническое правило — фразу, в которой первые буквы слов соответствуют спектральной последовательности звезд: О Be A Fine Girl, Kiss Me, Right Now («Будь хорошей девочкой, поцелуй меня сейчас же».). Ясно, что любой студент легко запомнит такую фразу. Правда, известный советский астроном профессор Б. Воронцов-Вельяминов считает, что легче запоминаются абсурдные, нелепые фразы, например: «Один бритый англичанин финики жевал, как морковь».

Эта система оказалась не очень тонкой, и астрономы разделили каждый интервал в этой последовательности еще на 10 частей. Например, наше Солнце — звезда класса G, подкласса 2. Могут быть звезды спектрального класса В0, В2 и т. д. до В9. Звезда, имеющая больший номер спектрального класса, имеет меньшую температуру поверхности.

Таким образом, в своем классе G — Солнце довольно горячая звезда. Как опытный сталевар по цвету легко определяет температуру стали, так и астроном, пользуясь законом Вина, без труда по цвету звезды определит ее температуру. Звезды красного цвета (М — в Гарвардской классификации) имеют температуру поверхности около 4000 К. Желтое Солнце нагрето уже примерно до 6000 К, а горячие звезды с температурами больше 10 тысяч К видятся нам бело-голубыми. Температуры звезд спектрального класса O достигают 40 000–50 000 К. Таким образом, спектральный класс звезды, или ее цвет, характеризует сразу же и ее температуру.

Очень важными характеристиками звезд являются их радиус и масса. Зная температуру и светимость звезды, можно без труда определить ее радиус. Действительно, из хорошо известного по школьному курсу физики закону излучения черного тела Стефана — Больцмана имеем:

L = 4πR2σT4,

где L — полная мощность излучения всей поверхности звезды, имеющей температуру T, σ — постоянная Больцмана.

Гораздо хуже обстоит дело с определением массы звезды. Хорошо, если звезда имеет компаньона, образуя двойную систему, и известны большая полуось орбиты и период обращения. Тогда можно использовать третий закон Кеплера и найти суммарную массу двух звезд. Если к тому же известно отношение орбитальных скоростей, можно определить массу каждой звезды. Но для тесных пар этого сделать уже нельзя.

Совсем плохо дело обстоит в случае одиночных звезд. Фактически сегодня астрономия не располагает методом независимого определения массы одиночной звезды. Сейчас астрономы пришли к следующему молчаливому соглашению: на главной последовательности звезды одинакового спектрального класса имеют равную массу. Существующие здесь неопределенности ограничивают в известной мере полноту наших знаний.

Тем не менее можно сказать, что современный астроном-наблюдатель может, в принципе, определить светимость, температуру, радиус, химический состав и массу звезды. Еще в начале века стали складываться представления о том, что эти величины не являются независимыми. Датский астроном Е. Герцшпрунг и американец Г. Рессел независимо друг от друга установили отчетливую корреляцию между светимостью звезд и их спектральным классом.

Давайте посмотрим на знаменитую диаграмму Герцшпрунга — Рессела. По оси ординат отложены абсолютные звездные величины (светимости), а по оси абсцисс — спектральные классы. Если на эту диаграмму нанести положение большого количества звезд, то образуется отчетливая и сравнительно узкая полоса Она называется «главной последовательностью». Справа и вверху от главной последовательности расположена группа гигантов, а в самом верхнем правом углу находятся сверхгиганты.

Это звезды высокой светимости, но относятся они к спектральным классам K и M, температура их поверхности сравнительно низка. Следовательно, радиусы этих звезд огромны — в десятки раз больше радиуса нашего Солнца.

В левом нижнем углу диаграммы расположены звезды малой светимости, белого цвета. Это — знаменитые «белые карлики».

Ясно, что диаграмму Герцшпрунга — Рессела можно построить и для отдельных скоплений звезд, в частности, для уже упоминавшихся шаровых скоплений. Это очень важно, поскольку считается, что все звезды скопления образовались из одного газо-пылевого облака и имеют примерно равный возраст.

Для различных скоплений вид диаграмм Герцшпрунга — Рессела может заметно отличаться. Но в любом случае диаграммы показывают на совершенно определенные закономерности в расположении звезд в них и на отчетливую связь между светимостью и спектром. Поэтому изучение диаграмм Герцшпрунга — Рессела лежит в основе теории эволюции звезд.

Если рассмотреть теперь связь между светимостью и массой, то станет ясно, что для звезд главной последовательности светимость и спектр звезды в первом приближении определяются ее массой. Этот факт чрезвычайной важности, и задача теории звездной эволюции — выявить конкретные физические механизмы, определяющие эти зависимости. Если мы еще раз посмотрим на главную последовательность, то наверняка обратим внимание на то, чем больше масса звезды, тем больше ее светимость, радиус и поверхностная температура.

В Галактике имеется как минимум два различных типа звездного населения. Население первого типа состоит из звезд, расположенных главным образом в плоскости диска Галактики, на заметных расстояниях от ее центра. Население второго типа характерно для шаровых скоплений и, соответственно, центрального района Галактики, поскольку они концентрируются главным образом к центру Млечного Пути. Звезды, имеющие различное пространственное распределение, заметно отличаются и по химическому составу. Так, например, звезды шаровых скоплений обеднены тяжелыми элементами по сравнению со звездами диска, а это свидетельствует о различии в возрасте звезд. Пространственному распределению в Галактике горячих массивных звезд очень хорошо соответствует распределение облаков межзвездного газа. Это сильный аргумент в пользу образования звезд путем конденсации газо-пылевых облаков.