Конечно же, короткая информация о типах населений и диаграмма Герцшпрунга — Рессела отнюдь не исчерпывают все характеристики звезд. Но поскольку мы сейчас переходим к новому разделу «Мира астрономии», нам нужны «ключевые слова». Мы должны узнать новую терминологию и иметь представление об основных и самых простых характеристиках звезд. С этим багажом мы уже можем отправиться в удивительно интересное путешествие по миру звезд, где многие объекты не укладываются ни в какие диаграммы и типы населений. Более того, они не укладываются и в обычные человеческие представления.
Как рождаются звезды
Рождение звезд в Галактике происходит непрерывно. С одной стороны, можно доказать неизбежность этого процесса простым примером, «на пальцах». Мы знаем, что возраст нашей Галактики порядка 10 миллиардов лет. Известно также, что ежегодно в нашей Галактике «умирает» как минимум одна звезда.
Если бы все звезды образовались одновременно, в начале жизни Галактики, то часть их к сегодняшнему дню должна была бы «умереть». Во всяком случае, все яркие массивные звезды, время жизни которых порядка десяти миллионов лет, должны были бы исчезнуть с небосвода. Поскольку мы все-таки можем любоваться россыпями звезд (в том числе и самых ярких!) на ночном небе, ясно, что в Галактике идут процессы, компенсирующие смерть звезд, а именно — их рождение.
С другой стороны, есть данные наблюдательной астрономии, напрямую свидетельствующие о рождении звезд. Как же это происходит?
Согласно общепринятой точке зрения колыбелями звезд являются газо-пылевые комплексы. Когда мы говорили о галактиках, мы упоминали о межзвездной среде. Сейчас самое время остановиться на этом вопросе подробнее. В начале XX века в астрономии было сделано выдающееся открытие, суть которого состояла в том, что межзвездное пространство отнюдь не является абсолютной пустотой, как это молчаливо предполагалось еще со времен Ньютона. Удалось установить, что межзвездное пространство заполнено газом очень малой плотности.
Интересно, что и в этом открытии основную роль сыграл эффект Доплера. Если наблюдать спектры двойных звезд, то по причине их орбитального движения вокруг общего центра масс линии в спектре будут периодически сдвигаться то в одну, то в другую сторону. Когда звезда начнет приближаться к нам, они будут немного уходить к фиолетовому концу спектра, а когда станет удаляться, линии будут испытывать красное смещение.
При наблюдениях происходило именно таким образом, за одним лишь исключением. Две линии, принадлежавшие Ca2+, оставались неподвижными на фоне периодических смещений всех остальных линий. Они получили название стационарных, и стало ясно, что они принадлежат не звезде, а межзвездной, неподвижной субстанции, поглощавшей излучение звезды в узких линиях.
То, что межзвездный газ был обнаружен по линиям кальция, не свидетельствует еще о том, что концентрация кальция там велика. Просто его так называемые резонансные линии поглощения находятся в видимой области спектра, в то время как линии наиболее распространенных элементов сдвинуты глубоко в коротковолновую область.
Возьмем, к примеру, водород, длина волны резонансной линии которого составляет всего 1216 ангстрем. Совершенно ясно, что эта линия в земных «условиях просто ненаблюдаема», поскольку атмосфера «зарезает» ее полностью. Поэтому большая часть информации о химическом составе межзвездного газа была получена методами внеатмосферной астрономии.
В 1972 году 90-сантиметровый телескоп специального спутника «Коперник» принес новую информацию о составе межзвездной среды. Там удалось обнаружить углерод, кислород, магний, кремний, серу, марганец и другие элементы. Было также установлено, что химический состав облаков существенно отличается от солнечного. Разумеется, в межзвездных облаках был обнаружен и самый обильный элемент Вселенной — водород. Причем очень важно, что водород может присутствовать в форме нейтрального атома (HI) и в ионизированной форме (HII). Отношение ионизированного и нейтрального водорода в различных облаках колеблется от нескольких десятых до значений менее чем 107.
Мы говорили о поглощении света звезд газом. Но в межзвездной среде есть еще один важный компонент — межзвездная пыль. Давно в Млечном Пути известны получившие название «угольных мешков» области, которые сильно поглощают излучение звезд, причем поглощающая материя распределена в Галактике весьма неравномерно.
Поглощение света вызывается субмикронными частичками, пылинками, имеющими очень сложный химический состав. Они образуются из углерода, силикатов, грязного льда, могут содержать в своем составе сложные органические соединения.
Кстати, об органических соединениях в межзвездной среде. Мне здесь хочется сказать о них несколько слов. Хотя это и не имеет прямого отношения к физике образования звезд, тем не менее мы должны хорошо представлять, какие соединения входят в состав межзвездной среды.
Итак, в течение нескольких лет после открытия линии межзвездного водорода (21 см) радиоастрономы пытались найти линии других элементов. Прошло более 10 лет, прежде чем в 1963 году в космосе был открыт гидроксид (OH–). Концентрация гидроксида сказалась в миллиард раз меньше концентрации атомов водорода. Поэтому казалось очень маловероятным обнаружить в космосе молекулы, состоящие из трех и более атомов.
Но в 1968 году в космосе обнаружили молекулы воды (H2O) и аммиака (NH3). Вскоре после этого открыли формальдегид (H2CO). Это была первая молекула, содержащая два «тяжелых» атома, помимо водорода. После открытия воды, аммиака и формальдегида список межзвездных молекул стал быстро пополняться. Оказалось, что в космосе присутствуют достаточно сложные органические молекулы, содержащие до одиннадцати атомов углерода!
Это дало возможность выдвинуть гипотезу, согласно которой межзвездная среда является не только колыбелью звезд, но и колыбелью жизни. Наиболее радикальные люди сейчас даже утверждают, что межзвездная пыль представляет собой… микроорганизмы, зародившиеся в глубинах Вселенной. Это, конечно, чересчур экстравагантная идея. Заметим сейчас, что число межзвездных молекул, обнаруженных в космосе, перевалило за полсотни, а более 240 спектральных линий остаются до сих пор неидентифицированными.
Вернемся к свойствам межзвездной среды. Средняя концентрация газа в Галактике невелика — около 1 частицы в кубическом сантиметре. Это сверхвысокий вакуум, абсолютно недостижимый ни в одной лаборатории на Земле. И тем не менее это не вакуум, это среда!
В чем суть подобного парадоксального утверждения? Мы говорим о вакууме в каком-то объеме, если длина свободного пробега частичек больше, чем линейный размер этого объема. Пусть у нас в лаборатории есть объем с радиусом в 1 метр и концентрацией частиц в нем 1010 см3, что примерно соответствует лабораторному вакууму в одну миллиардную часть давления земной атмосферы. В этом случае длина свободного пробега l ~ 1/lσ, где n — концентрация частиц, а σ — сечение столкновения атомов (σ — 10–15 см2). Мы видим, что длина свободного пробега равна примерно 105 см, то есть на 3 порядка превышает радиус нашего объема. Это хороший вакуум.