Выбрать главу

Сюрпризы гравитации

Большой экваториальный телескоп Пулковской обсерватории (конец XIX века).

Нейтронные звезды

В астрофизике, как, впрочем, и в любой другой отрасли науки, наиболее интересны эволюционные проблемы, проблемы, связанные с извечными вопросами «что было?» и «что будет?».

Что случится со звездной массой, примерно равной массе нашего Солнца, мы уже знаем. Такая звезда, пройдя через стадию красного гиганта, станет белым карликом. Белые карлики на диаграмме Герцшпрунга — Рессела лежат в стороне от главной последовательности.

Белые карлики — конец эволюции звезд солнечной массы. Они являются своеобразным эволюционным тупиком. Медленное и спокойное угасание — конец пути всех звезд с массой, меньше солнечной.

А что можно сказать о более массивных звездах? Мы увидели, что их жизнь полна бурными событиями. Но возникает естественный вопрос о том, чем же заканчиваются чудовищные катаклизмы, наблюдаемые в виде вспышек сверхновых?

В 1054 году на небе вспыхнула звезда-гостья. Она была видна на небе даже днем и погасла лишь через несколько месяцев. Сегодня мы видим остатки этой звездной катастрофы в виде яркого оптического объекта, обозначенного в каталоге туманностей Месье под номером MI. Это знаменитая Крабовидная туманность — остаток взрыва сверхновой.

В 40-х годах нашего столетия американский астроном В. Бааде начал изучать центральную часть «Краба» для того, чтобы попытаться отыскать в центре туманности звездный остаток от взрыва сверхновой. Кстати говоря, название «краб» этому объекту дал в XIX веке английский астроном лорд Росс. Бааде нашел кандидата на звездный остаток в виде звездочки 17m.

Но астроному не повезло, у него не было подходящей техники для детального исследования, и поэтому он не смог заметить, что звездочка эта мерцает, пульсирует. Будь период этих пульсаций яркости не 0,033 секунды, а, скажем, несколько секунд, Бааде, несомненно, заметил бы это, и тогда честь открытия первого пульсара принадлежала бы не А. Хьюишу и Д. Белл.

Лет за десять до того, как Бааде направил свой телескоп в центр Крабовидной туманности, физики-теоретики начали исследовать состояние вещества при плотностях, превышающих плотность белых карликов (106–107 г/см3). Интерес к этому вопросу возник в связи с проблемой конечных стадий эволюции звезд. Интересно, что одним из соавторов этой идеи был все тот же Бааде, который как раз и связал сам факт существования нейтронной звезды с взрывом сверхновой.

Если вещество сжимается до плотностей бóльших, чем плотность белых карликов, начинаются так называемые процессы нейтронизации. Чудовищное давление внутри звезды «вгоняет» электроны в атомные ядра.

В обычных условиях ядро, поглотившее электроны, будет неустойчивым, поскольку оно содержит избыточное количество нейтронов. Однако в компактных звездах это не так. С увеличением плотности звезды электроны вырожденного газа постепенно поглощаются ядрами, и мало-помалу звезда превращается в гигантскую нейтронную каплю. Вырожденный электронный газ сменяется вырожденным нейтронным газом с плотностью 1014–1015 г/см3. Другими словами, плотность нейтронной звезды в миллиарды раз больше плотности белого карлика.

Долгое время эта чудовищная конфигурация звезды считалась игрой ума теоретиков. Понадобилось более тридцати лет, чтобы природа подтвердила это выдающееся предсказание.

В те же 30-е годы было сделано еще одно важное открытие, которое оказало решающее влияние на всю теорию звездной эволюции. Чандрасекар и Л. Ландау установили, что для звезды, исчерпавшей источники ядерной энергии, существует некоторая предельная масса, когда звезда еще сохраняет устойчивость. При этой массе давление вырожденного газа еще в состоянии противостоять силам гравитации. Как следствие у массы вырожденных звезд (белые карлики, нейтронные звезды) существует конечный предел (предел Чандрасекара), превышение которого вызывает катастрофическое сжатие звезды, ее коллапс.

Отметим, что, если масса ядра звезды заключена между 1,2 M и 2,4 M, конечным «продуктом» эволюции такой звезды должна быть нейтронная звезда. При массе ядра менее 1,2 M эволюция приведет в конце концов к рождению белого карлика.

Что же представляет собой нейтронная звезда? Массу ее мы знаем, знаем также, что она состоит в основном из нейтронов, размеры которых также известны. Отсюда легко определить радиус звезды. Он оказывается близким к… 10 километрам!

Сравнительные размеры нейтронной звезды и современного города.

Определить радиус такого объекта действительно несложно, но очень трудно наглядно представить себе, что массу, близкую к массе Солнца, можно разместить в объекте, диаметр которого чуть больше длины Профсоюзной улицы в Москве. Это гигантская ядерная капля, сверхядро элемента, который не укладывается ни в какие периодические системы и имеет неожиданное, своеобразное строение.

Вещество нейтронной звезды обладает свойствами сверхтекучей жидкости! В этот факт на первый взгляд трудно поверить, но это так. Сжатое до чудовищных плотностей вещество напоминает в какой-то мере жидкий гелий. К тому же не следует забывать, что температура нейтронной звезды — порядка миллиарда градусов, а, как мы знаем, сверхтекучесть в земных условиях проявляется лишь при сверхнизких температурах.

Правда, для поведения самой нейтронной звезды температура особой роли не играет, поскольку устойчивость ее определяется давлением вырожденного нейтронного газа — жидкости.

Строение нейтронной звезды во многом напоминает строение планеты. Помимо «мантии», состоящей из вещества с удивительными свойствами сверхпроводящей жидкости, такая звезда имеет тонкую твердую кору толщиной примерно в километр. Предполагается, что кора обладает своеобразной кристаллической структурой. Своеобразной потому, что в отличие от известных нам кристаллов, где строение кристалла зависит от конфигурации электронных оболочек атома, в коре нейтронной звезды атомные ядра лишены электронов. Поэтому они образуют решетку, напоминающую кубические решетки железа, меди, цинка, но, соответственно при неизмеримо более высоких плотностях. Далее идет мантия, о свойствах которой мы уже говорили.

В центре нейтронной звезды плотности достигают 1015 граммов в кубическом сантиметре. Другими словами, чайная ложка вещества такой звезды весит миллиарды тонн. Предполагается, что в центре нейтронного монстра происходит непрерывное образование всех известных в ядерной физике, а также еще не открытых экзотических элементарных частиц.

Нейтронные звезды довольно быстро остывают. Оценки показывают, что за первые десять — сто тысяч лет температура падает от нескольких миллиардов до сотен миллионов градусов. Нейтронные звезды быстро вращаются, и это приводит к целому ряду очень интересных следствий. Кстати говоря, именно малые размеры звезды позволяют ей при быстром вращении оставаться целой. Будь ее диаметр не 10, а, скажем, 100 километров, она была бы просто разорвана центробежными силами.

Мы уже говорили об интригующей истории открытия пульсаров. Сразу же была высказана мысль, что пульсар — быстро вращающаяся нейтронная звезда, поскольку из всех известных звездных конфигураций лишь она одна могла бы остаться устойчивой, вращаясь с большой скоростью. Именно изучение пульсаров позволило прийти к замечательному выводу о том, что открытые «на кончике пера» теоретиками нейтронные звезды действительно существуют в природе и возникают они в результате вспышек сверхновых. Трудности их обнаружения в оптическом диапазоне очевидны, поскольку из-за малого диаметра большинство нейтронных звезд нельзя увидеть в самые мощные телескопы, хотя, как мы видели, здесь есть и исключения — пульсар в Крабовидной туманности.