Но, кроме того, и интенсивность света также будет падать, так как по часам внешнего наблюдателя промежутки времени между испусканием квантов света также будут увеличиваться, а следовательно, будет уменьшаться интенсивность светового потока. Проделанные оценки показывают, что коллапсирующая звезда с массой в два раза больше массы Солнца практически погаснет для внешнего наблюдателя за 2 · 10–5 секунды. Конечно, до достижения гравитационного радиуса фотоны будут еще выходить из звезды. Но нам от этого не легче. Что толку, если от этой звезды придет, грубо говоря, один квант света в год?
Говоря об эффектах ОТО в сильных гравитационных полях, нельзя не рассказать более подробно, как ведут себя световые лучи в окрестностях черной дыры.
В 1918 году астрономы попытались провести первые эксперименты по проверке общей теории относительности. В этом году произошло полное солнечное затмение, и во время наблюдений за ним удалось заметить отклонение лучей света в поле тяготения Солнца. Эксперимент подтвердил гениальное предсказание Эйнштейна. И хотя в окрестностях Солнца эффект искривления светового луча невелик, он достаточен для прямых наблюдений.
Поле тяготения черной дыры неизмеримо сильнее поля тяготения Солнца, и эффекты ОТО должны проявляться там гораздо заметнее. И действительно, расчеты показали, что свет, проходящий поблизости от черной дыры, будет гравитационно захвачен ею. На расстоянии, равном примерно полутора шварцшильдовским радиусам, существует воображаемая окружность, на которую световой луч будет «навиваться». Если луч проходит от дыры на более близком расстоянии, он будет поглощен ею.
Мы видим, что возможно столь сильное искривление луча света, что фотоны могут двигаться по замкнутой окружности. Отметим, что движение это неустойчиво. При малейшем возмущении квант света улетит с этой орбиты либо в гравитационную могилу, либо снова в космическое пространство.
Ряд дополнительных интересных эффектов возникнет в случае с вращающейся черной дырой. Дело в том, что Шварцшильд получил свое решение для неподвижной черной дыры, а в природе, по всей видимости, этот случай не должен иметь места вообще. Ведь нейтронные звезды вращаются очень быстро, а поскольку и нейтронные звезды, и черные дыры — продукт эволюции массивных звезд, черные дыры также должны иметь собственное вращение.
Вообще говоря, скорость вращения и масса полностью определяют свойства черной дыры. Есть еще, правда, электрический заряд, но все-таки большинство объектов во Вселенной можно считать электрически нейтральными, и поэтому главные параметры черных дыр — масса и вращение. Никакое другое свойство вещества, участвующего в образовании черной дыры, не передается ей «в наследство».
Если, к примеру, нам надо рассказать о Земле, мы должны знать ее форму, размеры, плотность, движение, параметры ее недр, поверхности, атмосферы. Черная дыра в этом смысле намного проще. Зная лишь ее массу и вращение, мы можем описать достаточно строго почти все ее свойства и характеристики. Я специально использовал здесь слово «почти», поскольку проблема сингулярности продолжает и, видимо, еще долгие годы будет продолжать как дамоклов меч висеть над всей современной физикой.
Итак, если черная дыра вращается, мы сталкиваемся с целым рядом новых ситуаций. Основное свойство вращающейся дыры состоит в том, что вокруг нее образуется область пространства-времени с весьма необычными свойствами, называемая эргосферой. Эта область ограничена воображаемой поверхностью, которая называется пределом стационарности. Между горизонтом событий и пределом станционарности ничто не может оставаться в покое, там само пространство-время как бы закручивается вокруг оси вращения черной дыры.
Лучи света, попавшие в эргосферу, даже если они шли по направлению к центру дыры, также будут крутиться там, хотя, впрочем, они могут и покинуть эту область. Космический корабль, залетевший в эргосферу, тоже может покинуть ее, но ничто не может внутри эргосферы быть неподвижным.
Экватор предела стационарности вращающейся черной дыры имеет одинаковый диаметр с горизонтом событий невращающейся черной дыры той же массы. Процесс вращения дыры приводит к одной удивительной возможности, на которую впервые обратил внимание английский физик-теоретик Р. Пенроуз в 1969 году. Он доказал, что из эргосферы черной дыры можно черпать энергию.
Если какое-то тело попадает в эргосферу и разделяется там на две части таким образом, что одна из них будет двигаться к горизонту событий, а другая в противоположную сторону, то эта вторая часть будет подхвачена гравитационным вихрем эргосферы и выброшена с огромной скоростью из нее. Заметим, что энергия осколка будет превышать первоначальную энергию исходного тела.
Поскольку законы сохранения вещь незыблемая, должна уменьшаться общая энергия дыры. Ясно, что из самой дыры мы ничего извлечь не можем, по определению, а следовательно, энергия черпается из эргосферы за счет уменьшения энергии вращения дыры, замедления вращения.
Оценки показывают, что если бы можно было построить машину, использующую в качестве источника энергии эргосферу черной дыры, то такая машина от момента ее пуска до остановки (прекращения вращения дыры) дала бы количество энергии, равное примерно тридцати процентам первоначальной массы — энергии вращающейся дыры. Это огромная величина, поскольку термоядерные реакции могут превратить в энергию лишь один процент массы вещества.
Таким образом вращающиеся черные дыры могут быть в принципе самыми мощными источниками энергии во Вселенной.
Можно представить себе и такую фантастическую картину. Облучая потоком электромагнитного излучения вращающуюся черную дыру, при определенных условиях мы можем заставить ее работать как гигантский усилитель, который будет выдавать из эргосферы поток гораздо более интенсивный, чем тот, который падал на черную дыру. Это явление названо суперрадиацией.
Если теперь окружить дыру искусственной сферой, то усиленные волны будут отражаться от поверхности сферы, попадать в эргосферу дыры, усиливаться, вновь отражаться и т. д. Если сфера сплошная, то такое устройство будет работать как накопитель энергии, и рано или поздно энергия излучения внутри сферы разорвет ее. Такая — к счастью, чисто умозрительная — конструкция получила название гравитационной бомбы. Мы видим теперь, что слово «эргосфера» (от греческого слова «эргон» — работа) действительно имеет глубокий смысл, из нее (из эргосферы) можно черпать энергию.
Мощнейшим источником энергии может быть и гравитационное поле невращающейся дыры. К примеру, газопылевые облака, падая на черную дыру, друг с другом будут сталкиваться еще до того, как дыра поглотит их. В процессе столкновения они будут нагреваться до очень высоких температур и излучать огромное количество энергии задолго до того, как исчезнут за горизонтом событий. Кстати говоря, именно подобные процессы и лежат в основе возможности наблюдения черных дыр.
Но что же все-таки происходит под горизонтом событий? Человек не был бы человеком, если бы не попытался ответить на этот вопрос.
Таких попыток за последние годы было сделано немало. И, конечно же, все они сталкивались с барьером сингулярности. Заметим, что при обсуждении проблемы сингулярности появился так называемый принцип космической цензуры, согласно которому любая сингулярность всегда образуется только в пределах горизонта событий: голых сингулярностей быть не может. Многие ученые рассматривали вращающиеся черные дыры как своеобразные перемычки между различными Вселенными. Они, эти перемычки, могли бы в принципе дать возможность путешествий в другие миры. Именно таким образом предполагалось осуществить связь с иными цивилизациями.
Более того, высказывались мысли об использовании черных дыр для путешествий во времени. Но в последние годы все чаще и чаще высказываются сомнения по поводу использования дыр как «транспортного» средства.