Фотосфера
Фотосферу удобно рассматривать как внешний, поверхностный слой Солнца, видимый в белом цвете. Этому слою можно приписать температуру 6700 K.
Слой этот по сравнению с другими довольно тонкий даже по нашим земным меркам, он простирается примерно на 500 километров, сливаясь, с одной стороны, с зоной конвекции, а с другой — с хромосферой. Поразительной особенностью фотосферы является так называемая грануляция, о которой мы уже упоминали чуть выше. Гранулы — это многоугольники на поверхности фотосферы, пересеченные узкими темными прожилками. Размеры гранул порядка тысячи километров, живут они несколько минут, сменяясь потом другими гранулами. Именно поэтому и возникло довольно удачное сравнение с кипящей рисовой кашей.
Уже чисто интуитивно напрашивается ответ на вопрос о природе подобных образований. Если каша кипит, то мы должны иметь дело с конвекцией.
И действительно, если мы начнем путешествие вместе с квантами излучения из центральных районов Солнца к его поверхности, то сначала ни кванты, ни воображаемый путешественник не будет испытывать заметных трудностей. Температуры там высоки, непрозрачность мала, и кванты без труда «просачиваются», диффундируют к поверхности.
С понижением температуры начинается рекомбинация электронов и ядер атомов в ионы, которые могут уже взаимодействовать с фотонами, в частности, поглощать их. Ясно, что непрозрачность при этом сильно возрастает.
Однако звезда должна «сбрасывать» энергию, выделяющуюся в ее недрах, если бы этого не было, она просто бы взорвалась. И вот здесь в игру вступает другой, уже известный нам механизм переноса энергии — конвекция, когда горячие элементы всплывают и отдают свое избыточное тепло окружающей среде, подогревают ее. Ну а вещество, которое опускается при конвективном перемешивании, холоднее окружающей среды, почему и кажется (при тех температурах, с которыми мы имеем дело) более темным. Поэтому можно считать, что разделяющие гранулы темные полосы — участки поверхности фотосферы.
Конвективная зона на Солнце начинается выше уровня, где значение радиуса достигает 0,85 полного радиуса Солнца. Здесь эффективность конвекции очень велика, она переносит почти весь поток солнечной энергии, хотя сама эта зона содержит всего около двух процентов массы Солнца.
Итак, грануляция фотосферы — типичное конвективное движение. Скорость этого движения около 300 метров в секунду, разница в температурах между светлыми и темными участками примерно 300 K.
В конвективной зоне происходит еще один удивительный процесс, имеющий большое значение не только для фотосферы, но и для хромосферы, и для короны Солнца. Что же это такое?
Еще раз вернемся к явлениям конвекции и грануляции. На первый взгляд может показаться, что и тот, и другой процессы должны быть совершенно хаотическими. Образование каждой ячейки, так же как и в кипящей рисовой каше, должно происходить случайно. Оказалось, однако, что это не так. В 1960 году было обнаружено, что вся поверхность в некоторых участках слоя, расположенного над верхней границей конвективной зоны, поднимается и опускается относительно некоторого среднего положения, смещаясь при этом на высоту примерно 25 километров. Причем горизонтальный размер области, которая поднимается и опускается, достигает 50 тысяч километров!
Долгое время это явление не находило объяснения. В последние годы картина все-таки прояснилась. Оказалось, что Солнце, вернее — его конвективная зона, работает как гигантский орган, генерируя акустические волны. Этот факт имеет огромное значение не только потому, что в руках астрофизиков появился новый метод изучения и фотосферы и конвективной зоны Солнца. «Пятиминутные» колебания переносят энергию в верхние слои атмосферы Солнца, определяя во многом происходящие в них процессы.
В последние годы в Крымской обсерватории под руководством академика А. Северного открыты более длиннопериодные колебания Солнца. Они носят глобальный характер. Здесь уже двигается вся «поверхность» Солнца в целом. Период этих колебаний составляет 160 минут.
Так как колебания охватывают весь раскаленный газовый шар, звезду, они, по всей видимости, также могут немало сказать о структуре недр Солнца. Однако объяснить природу этих колебаний сегодня нелегко, даже не учитывая причин их возбуждения. Более того, в рамках современных представлений о внутреннем строении Солнца и протон-протонном цикле внутри его теоретические оценки дают значение периода колебаний нашей звезды не 160, а 130 минут.
Таким образом, не только проблема солнечных нейтрино омрачает настроение теоретиков. Один из крупнейших специалистов в области исследования Солнца, А. Северный, полагает даже, что совокупность нерешенных вопросов может привести к «новому фундаментальному пересмотру наших представлений о внутренних процессах на Солнце». Он отмечает, что на сегодняшний день есть три «трещины» в фундаменте знаний о нашем светиле. О двух из них мы уже знаем. Это проблема борных нейтрино (в реакциях их образования участвует бор) и только что упоминавшиеся 160-минутные колебания.
Что касается третьей «трещины», то она, по всей видимости, не столь опасна, как две предыдущие. Связана эта «трещина» с противоречием, на первый взгляд очевидным, между палеоклиматическими и геологическими данными и следствиями, вытекающими из теории внутреннего строения Солнца. Вспомним, в чем состоит суть дела.
Если современные представления о внутреннем строении Солнца справедливы, то с того времени, как Солнце «село» на главную последовательность, и до настоящего момента его светимость должна была увеличиться примерно на 30 процентов. Но тогда мы должны были 3–4 миллиарда лет назад «иметь» очень холодную Землю, сплошь покрытую льдом. В то же время геологические данные неопровержимо свидетельствуют о том, что уже 3,8 миллиарда лет назад на Земле были океаны, была жизнь. В этом парадоксе некоторые астрофизики усматривают серьезный камень преткновения для теории внутреннего строения Солнца. Но на самом деле парадокс этот совсем не носит устрашающего характера. Он без труда разрешается в рамках теории возникновения и эволюции атмосфер планет.
Посмотрим, как это делается. Сначала обратим внимание на тот принципиальный факт, что при дегазации из недр Земли на поверхность прежде всего выделяется вода и углекислый газ. Об этом свидетельствуют множество анализов состава вулканических газов и газов, содержащихся в магматических породах — базальтах. По оценкам разных авторов, отношение массы воды к выделившемуся из мантии углекислому газу — от 4:1 до 10:1. То есть углекислоты поступает достаточно много. Именно углекислый газ, интенсивно поглощающий тепловые инфракрасные лучи, мог создать парниковый эффект, хотя Солнце грело плохо.
Гранулированная структура фотосферы Солнца.
Чтобы не быть голословным в дальнейших рассуждениях, нужно рассчитать температуру поверхности Земли 4,5 миллиарда лет назад. Атмосфера тогда была разреженной, а ее давление в сто или тысячу раз меньше, чем нынче. Если это так, то среднюю температуру поверхности Земли нетрудно вычислить как функцию ее альбедо (отражательной способности).
Альбедо Земли, почти лишенной атмосферы, по аналогии с Луной и Меркурием можно принять за 0,1. И тогда мы получаем, что, если светимость Солнца была на 40 процентов ниже сегодняшней, температура поверхности Земли составляла 33° ниже нуля по Цельсию.
Постепенно атмосфера становилась массивнее. По мере выделения летучих компонентов из магмы наружу пары воды, замерзая, окутывали планету мощным слоем сверкающего льда и снега. Альбедо росло, и поэтому температура поверхности снижалась. Но нет худа без добра: основным компонентом земной атмосферы становился углекислый газ. И он, создавая парниковый эффект, начал подогрев. С ростом концентрации CO2 в атмосфере поверхность Земли потихоньку разогрелась и льды начали таять.