Некоторые исследователи уверены, что математика развивается линейно. Однако эта точка зрения небесспорна. Линейное развитие математики, возможно, является лишь кажущимся, лишь следствием, подобно аксиомам и теоремам, которые представляют собой видимый итог длительных размышлений.
Счет состоит в определении числа элементов, образующих некоторую группу. Оценить число элементов в малых группах можно на глаз — чтобы увидеть, что группы из двух, трех или четырех элементов отличаются между собой, счета не требуется.
Однако различить группы, состоящие из более чем четырех или пяти элементов, уже не так просто. В этом случае счет необходим.
К первым разновидностям счета относятся попытки сопоставить числа с различными частями человеческого тела. Племена, обитающие на разных материках, использовали и до сих пор используют части тела для определения числа элементов множества (на языке математики это число называется мощностью множества).
Стадо или мешок рисовых зерен — это конечные множества. Натуральные числа также образуют множество, однако оно является бесконечным. Различить два конечных множества нетрудно: достаточно подсчитать число их элементов. Разница между множествами будет заключаться в том, что их мощность будет описываться разными числами. Далее вы увидите, что в случае с бесконечными множествами все обстоит совершенно иначе.
Подсчет имеет смысл, когда речь идет о конечных величинах. При этом мы избавляемся от отсылок к осязаемым предметам и сопоставляем каждой величине некий символ (устный или письменный). В отличие от счета на пальцах каждый символ сам по себе обозначает определенную величину. Такими символами являются цифры 1, 2, 3, 4, 5, 6, 7, 8, 9 и 0, которыми мы обозначаем базовые величины.
Важным шагом стало определение основания системы счисления. Подсчет большого количества предметов, при котором для каждой отдельной величины используется свое обозначение, не просто трудоемок, но практически невозможен, так как рано или поздно все обозначения закончатся. Кроме того, наша память также имеет пределы. С изобретением позиционной системы счисления по некоторому основанию счет перестал быть чем-то экстраординарным. В позиционной системе счисления по основанию 10, которую используем мы, для представления любого числа, сколь бы велико оно ни было, применяется всего десять символов. Слова, которыми мы обозначаем числа, определяются этой системой счисления, и этих слов совсем немного. Отдельными словами обозначаются числа 0, 1, 2, 10, 20, 30, … а также 100, 1000, 1000000. Названия всех остальных чисел составляются из этих же слов.
* * *
СЧЕТ
Системы счета существовали во всех культурах. В большинстве из них определенным числам соответствуют части тела — это так называемый телесный счет. В 1992 году исследователь Глен Гин выделил свыше пятисот различных систем счета, которые бытовали на острове Новая Гвинея. На карте обозначены регионы, в которых используется телесный счет.
ТЕЛЕСНЫЙ СЧЕТ
Пример телесного счета аборигенов Торресова пролива, отделяющего Австралию от Новой Гвинеи, согласно Джорджу Ифра (1994). Обратите внимание на асимметричность счета относительно тела человека. При счете конечности и пальцы рук и ног обходятся по кругу.
* * *
При этом на практике обычно используются приемы и приспособления, упрощающие счет и позволяющие избежать ошибок. Риск ошибиться при счете тем больше, чем больше величина, поэтому мы обычно считаем парами, пятерками или десятками.
Почему нам удобнее считать парами, а не тройками или семерками? Для счета парами достаточно повторять последовательность 2, 4, 6, 8, 10, добавляя на каждом этапе единицу слева, то есть прибавляя десяток.
Нет смысла считать четверками или восьмерками, так как, хотя 4 и 8 кратны двум, полученная последовательность чисел будет менее упорядоченной. Кроме того, десяток будет последовательно добавляться через два или три числа:
4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 32, 36….
8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104….
Подсчет по 3, 7 или 9 еще неудобнее. Полученные последовательности чисел повторяются реже и их сложнее удержать в памяти: