3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42….
7, 14, 21, 28, 35, 42, 49, 56, 70, 77, 84, 91, 98….
9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99, 108, 117….
Подсчет по 6 столь же непривычен, как и подсчет по 3, так как последовательность цифр в первом разряде запомнить неудобно:
6, 12,18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84….
Считать по 5 или по 10, напротив, очень удобно:
5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55….
10, 20, 30, 40, 50, 60, 70, 80, 90,100….
Однако такой подсчет обычно производится после того, как элементы, которые требуется подсчитать, разделены на группы по пять или по десять. При счете пятерками единица в левый разряд добавляется в конце каждого цикла (состоящего из 0 и 5). Счет десятками эквивалентен обычному счету, с той лишь разницей, что в первом разряде дописывается ноль.
При подсчете больших величин лучше всего записывать их в форме прямоугольника. В результате мы сможем найти ответ с помощью умножения, не пересчитывая все элементы по отдельности.
Этот принцип лежит в основе системы умножения майя. Чтобы умножить 312 на 34, майя использовали отдельные группы параллельных прямых, которыми обозначались сотни, десятки и единицы каждого числа. Линии второго числа располагались так, что они пересекали все линии в записи первого числа, после чего подсчитывалось число пересечений. Это наглядный способ записи обычного умножения столбиком:
Однако такой способ неудобен для перемножения больших чисел, так как в этом случае пересечений будет слишком много.
Но как быть, если мы хотим подсчитать бесконечные величины? Все мы используем слово «бесконечность» в обычной жизни для обозначения чего-то огромного, неизмеримого, необъятного. В противоположность обычной точке зрения существует не одна бесконечность: в математике различают по меньшей мере два вида бесконечности. К первому типу относится бесконечное число натуральных чисел, которые мы используем при счете: 1, 2, 3, 4, … Ко второму типу относится неисчислимая бесконечность, описывающая число точек на отрезке.
Бесконечность таит немало парадоксов. Например, сложно поверить, что множество натуральных чисел обладает такой же мощностью (числом элементов), что и его часть — множество четных чисел. Как это возможно, ведь натуральных чисел в два раза больше, чем четных? Их действительно в два раза больше, однако нечто, что в два раза больше бесконечности, также равно бесконечности.
Мы избавимся от всех сомнений, если четко оговорим, что следует понимать под бесконечным множеством. Говорят, что множество является счетным, то есть его элементы можно сосчитать, если элементам этого множества можно поставить в соответствие натуральные числа. Становится очевидным, что четные числа можно сосчитать и что установленное соответствие между четными и натуральными числами определяет мощность множества четных чисел:
Возможно, еще более удивительным вам покажется то, что множество рациональных чисел обладает той же мощностью, что и множество натуральных чисел.
Чтобы подсчитать рациональные числа, нужно представить их в виде дробей, расположить их определенным образом и установить порядок подсчета:
Мощность множества натуральных чисел равна «элементарной» бесконечности и обозначается символом (алеф ноль). Символом обозначается мощность бесконечного множества чисел, которое, в отличие от предыдущего, не является счетным, то есть его элементы нельзя подсчитать с помощью множества целых чисел.
Иными словами, элементам этого множества нельзя поставить в соответствие натуральные числа. Бесконечность этого множества имеет иную природу.
Простейший пример множества чисел, которое не является счетным, — это множество вещественных чисел, заключенных между 0 и 1 (к нему относятся иррациональные числа, которые нельзя представить как частное двух целых, например √2). Удивительное доказательство этого принадлежит великому Георгу Кантору.
Итак, допустим, что мы подсчитали все вещественные числа, заключенные между 0 и 1. Тогда мы можем упорядочить их следующим образом:
1 0,037563856636663…
2 0,919688568847383…
3 0,155382300008691…
4 0,000000033433002…
5 0,999995885994382…
6 0,101001000100001…
7 0,774647746477464…
…
Мы можем записать вещественное число вида 0, … не представленное в этом списке. Составить его можно так: если первый знак первого числа в списке равен 1, мы запишем 0, в противном случае — 1. Согласно этому правилу и с учетом вышеприведенных чисел наше новое число будет начинаться с 0,1…