Чтобы принять результат творчества, необходимо сменить угол зрения. Теперь уже не следует рассматривать степень как умножение числа само на себя столько раз, сколько указывает показатель степени, так как нет никакого смысла умножать число само на себя —0,12 раза или 71 раз. Исходная точка зрения послужила своеобразным трамплином к новому, более широкому и общему понятию, частным случаем которого она является. Творчество изменило нас.
Отрезок и треугольник — две базовые фигуры математики и всего человеческого знания в целом. Отрезок имеет единственную характеристику — длину. По сути, так как не существует никакого осязаемого объекта, который представлял бы собой отрезок, можно сказать, что отрезок «состоит» из длины. А вот треугольник, кроме длины (периметра), имеет еще и площадь — меру пространства, ограниченную тремя его сторонами.
Вычисление площадей с древнейших времен было одной из важных задач. В наиболее популярной легенде о происхождении математики говорится, что она зародилась в долине Нила, и причиной ее возникновения стала необходимость измерять площадь земли, затапливаемой во время разливов реки.
Для данного прямоугольника со сторонами а и b площадь S поверхности, ограниченной его сторонами, определяется как произведение его длины на ширину: S = а·Ь. Так как всякий треугольник является половиной некоторого прямоугольника, его площадь равна половине площади этого прямоугольника. Как можно видеть на следующем рисунке, площадь треугольника АВС равна половине площади прямоугольника APQC, основанием которого является сторона АС треугольника, а ширина равна высоте A, опущенной на основание АС:
Следовательно, площадь треугольника равна половине произведения его основания на высоту:
S = (1/2)·A·C·h
Любую плоскую фигуру можно разбить на несколько треугольников. Вычисление площади фигуры равносильно вычислению суммы площадей составляющих ее треугольников. Но как быть в случае, если фигура ограничена не прямолинейными, а криволинейными отрезками?
Простейшей криволинейной фигурой является круг. Задача о вычислении площади круга очень древняя, а задача о построении квадрата, площадь которого равна площади данного круга, с помощью циркуля и линейки — одна из трех классических задач геометрии.
Каково соотношение между площадью круга и площадью квадрата? В первом приближении площадь круга радиуса r можно оценить площадями вписанного и описанного квадрата:
Площадь круга Sс заключена между площадью квадрата с диагональю 2r и площадью квадрата со стороной 2r. Среднее значение этих двух площадей и будет первым приближенным значением площади круга S:
Сегодня нам известно, что этот результат не соответствует действительности, так как площадь круга равняется не 3r2, а πr2. Тем не менее в Древнем Египте соотношение между длиной окружности и ее диаметром принималось равным 3, хотя нетрудно видеть, что если окружность радиуса r совершит полный поворот, пройденная ею длина будет больше, чем ее утроенный диаметр. Однако сейчас нас интересует не поиск точного значения π, а переход от площади прямоугольника или треугольника к площади круга.
Можно построить вписанный и описанный равносторонний треугольник для данного круга, однако в этом случае задача только усложнится, а полученный результат будет не точнее предыдущего. Продолжив аналогичные рассуждения, придем к выводу, что если мы построим для данного круга вписанные и описанные многоугольники с большим числом сторон, то сможем вычислить его площадь с большей точностью. Результат будет тем точнее, чем больше сторон будет у этих многоугольников.
В пределе (если такая ситуация вообще возможна) мы получим два многоугольника с бесконечным числом сторон, площади которых будут равны площади круга.