Добавим к ним другие пары решений, удовлетворяющих уравнению:
Достаточно зафиксировать значение одной переменной, чтобы увидеть, что для каждого ее значения существует значение второй переменной, которое будет удовлетворять уравнению. Бесконечное число возможных значений одной переменной подразумевает бесконечное число значений второй переменной. В итоге алгебраическому уравнению Зх — у + 1 = 0 будет соответствовать прямая на плоскости:
Как следствие, решение системы из двух уравнений с двумя неизвестными становится геометрической задачей на нахождение точки пересечения двух прямых:
На математическое творчество в огромной степени повлияли технологии, появившиеся в последние несколько десятилетий. Компьютер легко справляется с задачами, на решение которых человеку понадобилась бы не одна сотня лет, а непрерывно растущие возможности программ в области визуализации информации превращают компьютер в испытательный стенд и математический микроскоп.
Благодаря новым технологиям мы познакомились с фрактальными кривыми, которые едва ли можно было представить еще 50 лет назад. Фракталы были известны уже тогда, однако интерес к ним, возможности их наглядного представления и использования росли с развитием технологий. Первым фракталом была кривая Коха, или снежинка Коха. Если классические кривые строятся как множество значений некой функции, то построение кривой Коха — рекурсивный процесс по определенному алгоритму. Исходной фигурой является квадрат, треугольник или любая другая фигура, стороны которой затем заменяются ломаной линией. Далее процесс повторяется, и этой же кривой заменяется каждое звено ломаной, построенной на предыдущем этапе, в итоге кривая принимает все более неправильную форму:
Первое подробное исследование фракталов было выполнено в 1980-е годы французским математиком польского происхождения Бенуа Мандельбротом. Одно из ключевых понятий, используемых при построении фракталов, — это орбита точки. Для любой функции, например f(х) = х2, можно рассмотреть орбиту данной точки или последовательность результатов, получаемых при последовательной замене аргумента функции следующим образом:
х = 0,5
f(0,5) = 0,52 = 0,25
f(0,25) = 0,252 = 0,0625
f(0,0625) = 0,06252 = 0,0039
=> Орбита точки 0,5 = {0,5; 0,25; 0,0625; 0,0039; …} —> 0.
Орбита точки х = 0,5 образована убывающей ограниченной последовательностью чисел, которая стремится к 0. Существуют фиксированные орбиты, в частности для х = 0 и x = 1. Орбиты некоторых точек уходят в бесконечность, например, это справедливо для точки x = 2:
х = 2
f(2) = 22 = 4
f(4) = 42 = 16
f(16) = 162 = 256
=> Орбита точки 2 = {2, 4, 16, 256…} —>
Компьютер позволил увидеть, что произойдет с похожей функцией на поле комплексных чисел:
Результат оказался неожиданным и с математической, и с эстетической точки зрения, так как множества точек, не уходившие в бесконечность, принимали при различных значениях с разнообразные и удивительные формы. Эти точки образуют так называемое множество Жюлиа. Комплексные значения с, для которых множество Жюлиа является связным, то есть не разбито на несколько частей или фрагментов, образуют множество Мандельброта, которое выглядит следующим образом:
Математики смогли увидеть множество Мандельброта лишь в 1980 году, и до этого им не приходилось сталкиваться со столь же сложным объектом. Помимо фрактальной природы, ввиду которой части этого множества подобны целому, это множество обладает безграничным разнообразием. Если мы рассмотрим увеличенное изображение любой его части, то увидим, что одни и те же фигуры повторяются в нем снова и снова:
Множество М обладает самоподобием и одновременно изменчивостью бесконечной спирали. Оно являет собой прекрасный пример математического творчества.