Выбрать главу

* * *

Неужели в его рассуждениях не было ни единой ошибки? Зачем ему потребовалось сопровождать свои рассуждения рисунками? Не описывают ли эти рисунки ситуации, не рассмотренные в постулатах? И действительно, уже в первой теореме Евклид считает истинным, что две дуги окружности пересекаются в точке, однако в каком из исходных постулатов это утверждается? Можно ли утверждать, что линии являются непрерывными? Не появятся ли на них промежутки, если мы рассмотрим их под микроскопом? С другой стороны, что именно рассматривал Евклид — отрезки или прямые?

Отрезки, прямые, треугольники, квадраты, круги… В математике царят столь совершенные фигуры, что, кажется, они не могут быть созданы человеком, а являются божественным творением либо существуют сами по себе, в идеальном и безупречном мире. Эту точку зрения, в которой явно прослеживается влияние идей Платона, разделяют практически все математики начиная с античных времен. Те же, кто считает иначе, пришли к своим убеждениям после длительных размышлений о сущности математики. Пифагорейцы полагали, что соотношениями чисел описаны законы всего сущего. Если совершенство было приближено к числу, то число было приближено к Богу. Круг — идеальная сущность, о свойствах которой говорят, что они «открыты». Можно сказать, что существует в некотором роде единый образ этой геометрической фигуры, общий для всех, и когда мы рассматриваем окружность, то открываем ее свойства и отношения с другими идеальными фигурами. Таково традиционное представление о математическом открытии, которое впоследствии было поставлено под сомнение.

Можно ли творить без помощи логики?

Логика — обязательный элемент математики. Именно логика — залог корректности математических выводов, строгий судья, определяющий их истинность или ложность. Однако математику нельзя свести исключительно к логике. Если бы теоремы можно было вывести с помощью формальных логических правил, с этой задачей вполне справился бы компьютер, выдав нам множество новых теорем. К сожалению, математики обычно публикуют окончательные и проверенные результаты своего труда, не позволяя нам увидеть путь, которым они шли.

Должно пройти много времени, прежде чем этот порядок вещей изменится. Математические блюда по-прежнему подаются на роскошной посуде и не содержат ни малейших изъянов. Мудрец-повар пробует свое блюдо снова и снова, пока не решит, что оно готово и его можно подавать. Он ищет ошибки и исправляет их, если находит. Если же в рецепт закралась неустранимая ошибка, такое блюдо немедленно отвергается и возвращается на кухню — именно там, а не в зале ресторана, вершится математика. Именно там готовятся аксиомы, теоремы и доказательства. Именно там совершаются ошибки, проверяются гипотезы и отвергаются идеи. Фартуки поваров покрываются грязными пятнами, а сами повара впадают в отчаяние, оттого что логика не идет на поводу у их интуиции. И тогда они тысячу раз проклинают свое ремесло, которое многие считают божественным.

Однако математическую кухню питает не только огонь логики: на ней не обойтись без интуиции, аналогий, экспериментов, гипотез, то есть без мысли. Так как все люди мыслят по-разному или руководствуются разными интересами, на размышления математиков и их деятельность влияют общество и культура. Почему одна теорема более ценна, чем другая? Почему все пытаются доказать одни теоремы и не уделяют внимания другим? С помощью логики можно сделать бесконечное множество тривиальных умозаключений, которые не представляют никакой ценности. Развитие математической мысли вызвано интересом людей к решению задач, теоретических и практических, полезных и бесполезных, а сами задачи могут отражать стремление к знаниям или рассматриваться как личный вызов.

Полнее и точнее всего этот аспект математики описан в классических научно-популярных книгах, в частности «Что такое математика?» американских авторов Рихарда Куранта и Герберта Роббинса (первое издание вышло в 1941 году, с тех пор книга неоднократно переиздавалась), в более поздней книге «Математический опыт» Филипа Дэвиса и Рубена Херша (1999) или в книге последнего «Что же такое математика на самом деле?» (1997). В этой книге Херш приводит простой и понятный пример: «Формулу 2 + 2 = 4 можно доказать как теорему в некоторой модели аксиом, однако ее сила и убедительность происходят из физической модели — например, ее правильность нетрудно подтвердить с помощью монет или камней». Более того, логика, используемая в формальном доказательстве, которое упоминает Херш, появилась значительно позже, чем подсчет камней. Курант и Роббинс, в свою очередь, подчеркивают важнейшую роль, которую играют в развитии математики эксперимент, интуиция и аналогия: