Что хотел сказать Борхес, когда написал, что мы находимся в одной из точек бесконечного пространства и времени? Возможно, что мы не можем увидеть его концов или пределов. Если бы пространство и время были конечными, можно было бы вести речь о половинах, третях, соотношениях и расстояниях от концов, но если пространство и время бесконечны, эти рассуждения теряют смысл.
То, что Борхес четко представлял себе бесконечность и ее связь с различными измерениями пространства, становится очевидным уже в начале рассказа: «Линия состоит из множества точек, плоскость — из бесконечного множества линий; книга — из бесконечного множества плоскостей; сверхкнига — из бесконечного множества книг…»[4]
* * *
ХОРХЕ ЛУИС БОРХЕС (1899–1986)
Хорхе Луис Борхес — один из самых выдающихся писателей XX века. Его произведения сложно привязать к какому-то конкретному жанру: их в равной степени можно отнести к рассказам, эссе, поэзии и фантастике. Фантазия Борхеса не лишена логики. В его рассказах содержатся прекрасные и доступные описания научных и математических идей, понятные широкой публике. К подобным произведениям относятся «Вавилонская библиотека», «Фунес памятливый», «Аналитический язык Джона Уилкинса» и «Сад расходящихся тропок». Некоторые считают, что в последней Борхес предвосхитил некоторые открытия квантовой механики.
На реверсе аргентинской монеты достоинством в 2 песо, выпущенной в 1999 году в честь столетия со дня рождения Хорхе Луиса Борхеса, изображен лабиринт, упоминаемый во многих произведениях писателя.
* * *
В еще одном его произведении главную роль играют не числа, а измерения.
«Диск» — это короткий рассказ, в котором алчный дровосек убивает зашедшего к нему путника, после чего много лет ищет оброненный его жертвой магический диск — диск Одина, у которого всего одна сторона:
«— Я иду путями изгнанника, но я король, ибо у меня есть диск. Показать тебе его?
Он разжал костлявый кулак. В нем ничего не было. Ладонь была пуста.
Только сейчас я вспомнил, что до этого он не разжимал его ни разу.
Пристально глядя на меня, он сказал:
— Можешь коснуться.
С некоторой опаской я дотронулся кончиками пальцев до его ладони.
Я почувствовал холод и увидел, как что-то сверкнуло. В то же мгновение его пальцы сомкнулись. Я ждал. Незнакомец продолжал, как если бы он говорил с ребенком:
— Это диск Одина. У него есть только обратная сторона. Подобного ему нет на всей земле. Пока я владею им, я король.
— Он из золота? — спросил я.
— Не знаю. Это диск Одина. И у него одна-единственная сторона»[5].
У трехмерного диска три стороны. Две из них имеют форму круга, третья — это полоса, их соединяющая, которую мы можем развернуть в виде прямоугольника.
Двумерные предметы не имеют толщины. Математическое творение Борхеса состоит в том, что он доказал, что у диска Одина нет толщины, так как у него нет одной из боковых сторон. Дровосек никак не может найти диск, потому что он, скорее всего, упал невидимой гранью вверх.
Отсылки к математике содержатся и во многих произведениях Итало Кальвино:
«Космикомические истории», «Раздвоенный виконт», «Незримые города». Так, его совершенно нематематический роман «Незримые города» содержит множество связей с различными математическими идеями. На страницах романа Марко Поло описывает города своей империи Кубла-хану. Каждый город носит женское имя, и мы выбрали в качестве примера фразу из описания города Доротея:
«О городе Доротее можно повествовать двояко: либо рассказывая о том, что над ее стенами вздымаются четыре башни, а к семи воротам ведут подъемные мосты, переброшенные через ров; четыре канала с водой зеленого цвета пересекают город и делят его на девять кварталов, в каждом из которых находится по триста домов и семьсот дымоходов…»[6]
При описании архитектурных элементов города Кальвино использует конкретные величины: четыре башни, семь ворот, четыре канала с водой зеленого цвета, девять кварталов, 300 домов и 700 дымоходов. Неизбежно возникает желание провести некоторые расчеты. Так, всего в Доротее 9·300 = 2700 домов и 9·700 = 6300 дымоходов, что означает, что во многих домах больше двух дымоходов.
Не будем сосредотачивать внимание на этих вычислениях, а обратимся к топологическому аспекту описания, которое гласит, что «четыре канала с водой зеленого цвета пересекают город и делят его на девять кварталов».