В одной рекламной кампании, запущенной несколько лет назад, был показан автомобиль, отражавшийся в идеально зеркальной поверхности пола. В результате казалось, что автомобиль словно парит над зеркалом. Над изображением автомобиля можно было прочесть формулу и слоган:
Имеет ли какое-то отношение равенство к стремлению к совершенству?
Сначала может показаться, что приравнять к бесконечности сумму двух конечных чисел, какими являются единицы, нельзя, поскольку неожиданно получается:
Быть может, это равенство имеет какой-то смысл? Пусть в повседневной трактовке бесконечности и в привычной трактовке суммы чисел это не так, однако существуют и другие трактовки, в которых это равенство может быть абсолютно верным.
Будем рассматривать не множество натуральных чисел в целом, а множество X, содержащее всего три элемента:
Сопоставим элемент 0 с нулем, элемент 1 — с произвольной конечной величиной, элемент ©о — с некоторой величиной, которая не является ни нулевой, ни конечной. С учетом вышесказанного логично предполагать, что
Ничто + что-то = что-то.
Конечное + конечное = конечное.
Бесконечность + что-то = бесконечность.
Поэтому сумма 1 + 1 должна быть не бесконечной, а конечной, а операция сложения на множестве X должна описываться следующей таблицей:
Эта операция сложения обладает привычными нам свойствами. Так, она коммутативна (описывающая ее таблица симметрична относительно диагонали), содержит нейтральный элемент (ноль), который при сложении с любым другим элементом оставляет его неизменным, кроме того, эта операция обладает ассоциативностью (порядок сложения трех элементов не влияет на итоговый результат). Сохранятся ли эти свойства, если мы заменим равенство 1 + 1 = 1 на , как указано в рекламном слогане? Иными словами,
В этом случае таблица по-прежнему симметрична относительно диагонали. Ноль по-прежнему является нейтральным элементом. Свойство ассоциативности также сохраняется.
Однако не выполняется одно из ожидаемых свойств — ни для 1, ни для нет противоположного элемента. Не существует элемента, который в сумме с 1 давал бы 0, и не существует элемента, который в сумме с давал бы 0. Чтобы исправить это, необходимо, чтобы в каждой строке или в каждом столбце таблицы имелся минимум один 0. Очевидно, что если заполнить таблицу нулями, проблема будет решена, однако подобное решение нас не устраивает.
Цифры в первой строке и в первом столбце таблицы неоспоримы, так как при сложении нуля с любой величиной результатом всегда является эта величина. Если мы определим , новая таблица примет вид:
Чтобы для операции сложения были определены противоположные элементы, 0 должен встречаться в каждой строке и в каждом столбце. Если мы хотим, чтобы эта операция обладала коммутативностью, таблица должна быть симметричной относительно диагонали. Обеспечить это можно всего несколькими способами:
Не существует значения а такого, чтобы операция сложения, определенная в первой таблице, обладала бы ассоциативностью:
Третья таблица также не подходит:
Только подставив b = 1 во вторую таблицу, мы получим верное решение. Конечно, равенства противоречат нашим привычным представлениям.
Мы создали алгебраическую структуру, состоящую из множества X = {0, 1, } и операции +, обладающей требуемыми свойствами, результаты которой всегда принадлежат множеству X. Результаты операции сложения для элементов множества X непривычны для нас, но это тема отдельного разговора.
Линейные и экспоненциальные функции
На упаковках губок одной марки в течение нескольких лет приводился график с текстом: «Не позволяйте бактериям размножаться». На нем были изображены две стрелки в координатной плоскости. Одна иллюстрировала результаты применения губки, другая — скорость размножения бактерий без использования губки.
Заслуживает внимания правильное использование терминологии и графика.
Численность бактерий с течением времени возрастает. В рекламном тексте говорится, что при использовании губки численность бактерий перестанет умножаться. Допустим, в единицу времени появляется b новых бактерий, при этом b > 1. По прошествии t единиц времени их число будет равно: