Английский математик и философ науки венгерского происхождения Имре Лакатос.
Однако для строительства этой магистрали необходимы и другие, на первый взгляд незаметные, факторы, в частности эксперимент, интуиция и аналогия. Вновь процитируем слова Херша:
«Доказательство в реальной жизни, полностью или частично, является неформальным. Фрагмент формальной аргументации — вычисления — обретают смысл только как дополнение или подтверждение некоторого неформального рассуждения. Логический и формальный облик доказательства является предметом рассмотрения логики, а не математики реального мира…»
Математические знания создаются по итогам критической проверки результатов, представленных членами научного сообщества, однако истоки этих знаний лежат в практике и в ощущениях, подобных тем, что испытывает любой человек, взаимодействуя с окружающей средой. Такая «натуралистическая» точка зрения, как вы увидите на страницах этой книги, допускает возможность совершения математических открытий в сферах, никак не связанных с наукой.
Взгляд на математику как на продукт культуры, в котором, как и в любом другом продукте культуры, возможны неточности, а основы которого носят эмпирический характер, носит название «социальный конструктивизм». Эта точка зрения близка взглядам уже упомянутых нами авторов, в частности Лакатоса, Дэвиса и Херша.
Процитируем одного из наиболее выдающихся представителей этой школы, американца Пола Эрнеста:
«В общей сложности тезис социального конструктивизма заключается в том, что объективное математическое знание существует в социальном мире человеческих действий с его правилами и благодаря ему. В основе этого знания лежит субъективное математическое знание отдельных людей, которое непрерывно воссоздается. Так, субъективное знание воссоздает объективное, при этом последнее нельзя свести к первому».
В этом видении математики наука и образование идут рука об руку, а обучение математике определяется обществом и культурой. Историки математики упоминают о важных для развития этой науки цивилизациях древнего мира: это Древняя Месопотамия, Древний Египет, Древняя Греция, древняя Аравия, древняя Индия и древний Китай. Все это мертвые цивилизации.
Историки сходятся в том, что математика берет начало в глубокой древности, когда зарождался сам язык, когда еще не существовало ни западной культуры, ни цивилизации вообще. Если мы будем считать создание и распространение систем счисления началом математической деятельности человечества и, подобно выдающимся историкам науки, будем полагать, что системы счисления были созданы до того, как появилась письменность, то остается сделать последний вывод: математика зародилась не только за рамками нашей культуры, но и задолго до ее рождения.
Накопленные математические знания и наследие Платона заставляют думать, что математика представляет собой череду открытий, однако в этой науке не открывают — здесь создают. Процитируем испанского логика Жузепа Пла:
«…Математика, практически так же, как язык, является продуктом человеческого разума и обладает собственной жизненной силой, что заставляет думать, что она существует независимо от математических знаний и математического творчества. Позволю себе решительно заявить — эта точка зрения ошибочна».
Проиллюстрируем это представление на примере. Допустим, что животные собрались на водопой. Некий человек, посмотрев на них, опишет их множеством способов и сформулирует множество вопросов о них. Но эти описания и вопросы будут определяться его культурой. При этом математики-формалисты указывают, что на водопой собралось, например, семь животных, и их число не зависит от наблюдателя. Мы нашим примером хотим подчеркнуть, что число семь определяется нашей культурой, так как наблюдатель умеет считать, умеет различать «много» и «мало» и ему интересно, сколько же именно составляет «много», а сколько — «мало».