Пуанкаре делил творческий процесс на этапы. Он начинал с долгой и трудной работы над темой в течение нескольких недель. Затем какое-то необычное событие (например, выпитая чашка черного кофе) мешало ему заснуть, и его начинали одолевать идеи. Именно в этот момент отдельные идеи переплетались и соединялись в единое целое. Далее полученные результаты улучшались, после чего по аналогии к нему приходила новая идея. Затем начиналась новая фаза, во время которой ученый занимался чем-то далеким от математики (например, отправлялся на экскурсию), отвлекаясь от своих размышлений. И во время какого-то вполне обычного действия (например, когда он садился в автобус) Пуанкаре понимал ключевую взаимосвязь между элементами, которые казались не зависящими друг от друга (например, между фуксовыми функциями и неевклидовой геометрией). Вернувшись домой, он проверял правильность пришедшей к нему мысли.
Внезапное озарение, посетившее Пуанкаре, было результатом длительной сознательной и подсознательной умственной деятельности. И этот подсознательный труд, который порой оказывается более продуктивным, чем сознательный, по всей видимости, начинается только после того, как проведен определенный объем сознательной работы, как если бы мы оставили компьютер в спящем режиме или свернули окно одной программы и запустили другую. Однако программа, окно которой мы свернули, продолжает работу и выдает решение, о котором мы узнаем только тогда, когда открываем ее окно снова, щелкнув на него или закрыв все остальные программы. Пуанкаре особо выделял роль осознанного труда: даже если он казался безрезультатным, без него совершить открытие невозможно.
Нам неизвестно, какие умственные процессы привели Архимеда к его открытиям, но, возможно, он чувствовал нечто подобное. Те, кто занимался математикой на профессиональном или любительском уровне, наверняка понимают, что Пуанкаре имел в виду.
* * *
АНРИ ПУАНКАРЕ (1854–1912)
Этот знаменитый французский математик, помимо прочего, известен благодаря топологической гипотезе, носящей его имя, которую, по меньшей мере в общих чертах, доказал российский математик Григорий Перельман в 2002 году. Нить на двумерной поверхности сферы можно непрерывно сворачивать, пока она не обратится в точку. Гипотеза Пуанкаре гласит, что аналогичная ситуация возможна для сферы с трехмерной поверхностью, находящейся в четырехмерном пространстве.
На иллюстрации показана петля, затягивающаяся вокруг точки на поверхности сферы.
* * *
Именно так математическое творчество традиционно рассматривается в психологии. Однако следует выделить еще несколько моментов помимо тех, на которые нам указал великий француз. Один из них состоит в том, что умелый математик способен связать воедино вещи, которые кажутся совершенно разными. Пуанкаре уделял этому огромное внимание и даже говорил, что математик — это человек, дающий разным вещам одно наименование. Это умение важно не только в математическом творчестве, но и в творчестве вообще. Еще один момент, который тесно связан с предыдущим и который выделяют как Пуанкаре, так и Курант и Роббинс (1996), Пойа (1988) и Лакатос (1994), заключается в том, что в математическом творчестве важную роль играет аналогия.
Мы говорили, что основная составляющая математического творчества — аналогия. Более того, если вы хотите создать нечто новое в математике, мыслите аналогиями и отставьте логику в сторону. А что еще оказывает влияние на творческий процесс?
В психологическом подходе к мыслительному процессу проводится различие между логическим и творческим мышлением: в психологии утверждается, что существует некая мыслительная деятельность, отличная от способности делать выводы на основе исходных утверждений и четко определенных правил. В чем же именно заключается творчество, результатом которого является нечто новое, оригинальное и ценное? Уже Платон устами Сократа сформулировал парадокс:
«Как собираешься ты искать нечто, природа чего тебе совершенно неизвестна? Что из неизвестного тебе нужно найти? И если волею случая ты найдешь это, как ты узнаешь, что это именно то, что ты ищешь, если тебе это неизвестно?»
Не следует отвергать возможность того, что найти нужное нам поможет случай. Внезапное озарение, о котором мы говорили выше, порой помогает установить нужную связь между совершенно разными идеями. Эта связь, которая помогает решить задачу, является той самой единственной из множества, о которой говорил Пуанкаре. Тем не менее что-то подсказывает, что идея возникает не по воле случая или, по меньшей мере, не только по воле случая.