Выбрать главу

1729 = 13 + 123 = 93 + 103.

Тогда я спросил его, знает ли он решение для четвертой степени, и он ответил, подумав, что оно не так очевидно, и что первое из таких чисел должно быть очень большим».

Рамануджан увлекся областью математики, которую Харди считал самой трудной: теорией чисел. И очень скоро перед ним встала та же задача, которая мучила всех математиков, на протяжении веков блуждающих в загадочном царстве простых чисел. Рамануджан решил найти «волшебную формулу», которая бы позволила получить все простые числа. Эта задача неизбежно вела к другим серьезным проблемам, таким как исследование расходящихся рядов.

В Индии экономическое и социальное положение Рамануджана не позволяли ему добиться существенного прогресса. Знакомые математики тоже не могли ему посодействовать. Тогда друзья помогли ему составить письмо на английском языке, в котором Рамануджан описал свои результаты и желание расширить свои знания. Оно было отправлено нескольким известным европейским математикам.

Вот это замечательное письмо:

Дорогой сэр,

я беру на себя смелость обратиться к Вам, являясь чиновником бухгалтерии мадрасского порта с окладом всего лишь в 20 фунтов стерлингов в год. Мне 23 года. Я не имею университетского образования, но я закончил школу. После окончания школы я все свое свободное время посвятил математике. Я не следовал регулярной системе обучения, по которой занимаются в университетах, а избрал свою дорогу. Особенно усердно я занимался расходящимися рядами, и результаты, которые я получил, местные математики называют поразительными…

Я прошу Вас просмотреть прилагаемые материалы. Я беден и не могу сам их опубликовать, но если Вы найдете среди них что-либо ценное, то прошу Вас это опубликовать. Я не включил ни моих выкладок, ни полученных окончательных выражений, но описал пути, по которым я шел.

Так как я очень неопытен, я буду благодарен за любой совет, который Вы мне соблаговолите дать. С просьбой извинить меня за доставленные хлопоты, дорогой сэр,

искренне Ваш,

С. Рамануджан.

* * *

ГОДФРИ ХАРОЛД ХАРДИ (1877–1947)

Харди был яркой личностью с типично британским чувством юмора и очень избранным кругом друзей. Как-то раз он придумал особую систему, оценивающую таланты людей по стобалльной шкале. Конечно, она не предназначалась для широкого пользования. По этой системе он сам получил 25 баллов, в то время как Джон Литлвуд — 30, а лучший друг Харди и коллега Давид Гильберт- 80 баллов. Когда систему применили к Рамануджану, тот получил максимальный балл.

По словам Харди, его самым большим вкладом в математику было то, что он открыл Рамануджана.

* * *

Из всех математиков, получивших письмо Рамануджана, лишь Харди оценил его результаты. Рамануджан послал ему около 120 теорем, содержащих много формул.

Вспоминая это, Харди писал: «Я никогда не видел ничего подобного. Одной страницы было бы достаточно, чтобы показать, что это работа математика самого высокого уровня. Эти результаты должны были быть правильными, поскольку если бы они не были правильными, то ни у кого не хватило бы воображения придумать их».

В мае 1913 г. Харди получил для Рамануджана грант на обучение в Кембридже. Сначала Рамануджан отказался, потому что его мать не хотела, чтобы он уезжал в Англию, но в конце концов она смягчилась и благословила его в путь. Причина такой перемены, как рассказывал Харди, заключалась в том, что «однажды утром его мать сказала, что видела во сне сына, сидящего в большом зале в окружении европейцев, и что богиня Намагири приказала ей не становиться на пути сына и помочь ему достичь своей цели».

В конце концов благодаря усилиям Харди Рамануджан получил возможность учиться в Кембридже частично за счет средств Мадраса и частично за счет средств Тринити-колледжа. Английский математик, который стал его учителем, столкнулся со сложной задачей. Какой метод избрать, чтобы обучить Рамануджана современной математике?

«Глубина его знаний так же велика, как и пробелы в них», — восклицал Харди. Трудности заключались еще и в огромном количестве тем, которыми занимался Рамануджан, смешивая новые результаты с уже известными. Рамануджана надо было в значительной степени переучивать, но Харди старался не повредить слишком большим количеством формализма то, что он называл «чарами вдохновения».

* * *

НОМЕРА ТАКСИ

После исторической встречи Рамануджана и Харди в санатории Патни наименьшие числа, которые могут быть выражены в виде суммы двух кубов n различными способами, получили название «номеров такси». Они определяются следующим образом: «n-й номер такси есть наименьшее натуральное число, которое может быть выражено различными способами в виде суммы двух положительных кубов». В настоящее время известны следующие «номера такси»: