Гэрберт Орильякский, избранный папой римским под именем Сильвестра II, был папой-математиком.
* * *
Простые числа называют «кирпичами» в здании математики, «атомами» математики и «генетическим кодом» чисел. Дома строятся из кирпичей, все в природе состоит из атомов, а живые организмы определяются генетическим кодом. Все эти аналогии основаны на общем понятии: первичных элементах, из которых строится вся система. Рассмотрим теперь роль простых чисел в математике.
Как мы увидели, число может быть разложено на делители, или на множители. Так, число 12 можно представить в виде 3 x 4. Напомним, что при разложении на множители имеется в виду, что число 12 производится числами 3 и 4. Но мы также знаем, что число 12 может быть получено и из других чисел, например:
12 = 2 x 6 = 3 x 4 = 2 x 2 x 3.
Итак, процесс разложения числа на множители называется факторизацией. Напомним, именно этот процесс привел нас к точному определению простого числа, при факторизации которого мы получаем только единицу и само число в качестве множителей. Например, число 13 будет разложено так:
13 = 1 х 13.
Когда один из множителей в произведении повторяется, мы используем надстрочный индекс, равный количеству повторений. Например:
2 х 2 х 2 х 2 х 2 = 25;
З х З х З х З = 34.
В математике это называют «степенью». Читается это как 25 (два в пятой степени) и З4 (три в четвертой степени).
В предыдущем примере мы представили число 12 в виде трех произведений с различными множителями: 2 и 6; 3 и 4; 2, 2 и 3. Только последнее из этих произведений содержит лишь простые множители. Рассмотрим другой пример, число 20:
20 = 2 x 10 = 2 x 2 x 5 = 4 x 5.
Только произведение 20 = 2 x 2 x 5 = 22 х 5 содержит лишь простые множители.
Перед нами встает следующий вопрос: можно ли любое наугад взятое число всегда разложить на простые множители? Другими словами, может ли оно быть представлено в виде произведения только простых чисел? Ответ на этот вопрос положителен. Более того, любое число можно разложить на простые множители единственным образом. Когда мы записываем число 20 в виде произведения простых множителей, 20 = 22 х 5, мы делаем это единственно возможным образом, учитывая, что порядок множителей не имеет существенного значения, то есть разложения 2 х 5 х 2 и 5 х 2 х 2 считаются одинаковыми. Эта теорема была сформулирована Евклидом и известна как «основная теорема арифметики». Она утверждает, что «любое натуральное число может быть представлено единственным образом в виде произведения простых множителей».
* * *
КАК НАЙТИ ПРОСТЫЕ ЧИСЛА
Чтобы разложить число на простые множители, для начала нужно написать исходное число слева от вертикальной линии. Затем проверить, делится ли число на 2, 3, 5 и т. д., то есть на простые числа, начиная с самых маленьких. Если делится, то мы записываем результат деления слева от черты и проделываем с ним то же самое. Процесс продолжается до тех пор, пока слева не появится единица. Тогда правый столбик будет содержать простые числа, которые являются множителями в разложении исходного числа.
* * *
Так что когда мы пишем 24 = 23 х 3, мы утверждаем, что это единственный способ разложить число 24 на простые множители. Таким образом, название «основная теорема» полностью оправдано, поскольку это одна из основ арифметики. Кроме того, в этом смысле простые числа также играют важнейшую роль. Возвращаясь к вышеупомянутым сравнениям, можно сказать, что разложение 23 х 3 является формулой ДНК числа 24; это — последовательность, состоящая из генов 23 и 3, или из атомов 2 и 3, образующих элемент 24.
Следовательно, простые числа являются первичными элементами, из которых построены все числа. Слово «простой» (prime) происходит от латинского слова primus, означающего «первый» и включающего в себя оригинальное значение «первичный», или «примитивный», так как все числа могут быть порождены простыми числами. Так же как атомы образуют молекулы, простые числа образуют составные числа. Все известные химические элементы состоят из атомов, которые сочетаются друг с другом определенным образом. Русский химик Дмитрий Иванович Менделеев (1834–1907) создал периодическую систему элементов, расположив все химические элементы по группам. Однако не существует аналогичной таблицы для простых чисел, в которой они были бы сгруппированы в соответствии с неким правилом, не существует закона, который генерирует все простые числа без исключений. Простые числа появляются хаотическим образом и распределяются в ряду натуральных чисел без всякой видимой закономерности.