Но с простыми числами все намного сложнее.
Например, ни у кого не хватит терпения проверить, что число 1409 305 684 859 является результатом умножения простых чисел 705 967 и 1996 277, особенно если учесть, что эти два простых числа взяты из списка простых чисел между 1 и 2000000, а там таких «всего лишь» 148933. Однако мы живем в эпоху высоких технологий, и, конечно, эту задачу можно довольно быстро решить с помощью хорошей программы и мощного компьютера. Хотя все зависит от того, насколько большой этот магазин красок. Не следует также забывать, что количество простых чисел не просто очень большое, а бесконечное.
Пара простых чисел в приведенном выше примере содержит лишь несколько цифр. Если мы возьмем простые числа, каждое из которых содержит сотни цифр, то время, которое потребуется компьютерной программе на простой перебор всех возможных вариантов — метод «грубой силы», как говорят криптографы, — будет больше, чем предполагаемое время существования Земли.
Простые числа повсеместно используются в нашей повседневной жизни, например, в кредитных картах и персональных компьютерах, поэтому постоянно существует потребность в новых простых числах (чем больше, тем лучше) для генерации секретных кодов. Таким образом, имеется спрос на простые числа, но контроль качества так же важен, как и их производство. Чтобы большому числу присвоить статус простого, его должна проверить специальная организация.
Шифр RSA был опубликован в 1978 г., но повсеместно начал использоваться в качестве метода шифрования лишь в конце 1990 гг. в связи с ростом сети интернет. Поиск больших простых чисел прежде требовал специального программного обеспечения, которое, как правило, можно было купить лишь в специализированных фирмах или в университетах, занимающихся такими исследованиями. Однако экспоненциальный рост вычислительных мощностей и появление более совершенных алгоритмов изменили рынок простых чисел и сделали их гораздо более доступными.
* * *
RSA-129
В апреле 1994 г. шифр RSA-129 потерпел полное фиаско. Он был построен на числе, содержащем 129 цифр, о чем объявили авторы этой системы шифрования, предложив желающим взломать его. Около 600 математиков с помощью 1600 добровольцев, найденных через интернет, работали над проблемой, и в конце концов им удалось разложить это число на множители. Однако было подсчитано, что если все компьютеры в мире будут работать параллельно, чтобы взломать код из 1024 цифр, им потребуется время, равное возрасту Вселенной (13,7 миллиарда лет). А теперь представьте себе, что в шифровании с открытым ключом используются числа, содержащие 128,1024 и даже 2048 цифр! Чем больше цифр использует система шифрования, тем устойчивее она к атакам, хотя это, конечно, замедляет процесс расшифровки.
* * *
Появление логарифмов позволило значительно сэкономить время при выполнении вычислений. Позже появились логарифмическая линейка и первые вычислительные машины, которые использовали вращающиеся цилиндры для выполнения операций сложения и умножения.
Тем не менее, именно компьютеры смогли делать вычисления, выходящие за пределы возможностей человеческого мозга. Машины могли даже имитировать дедуктивные рассуждения — одно из свойств математического мышления. В этот момент некоторые ученые почувствовали, что компьютеры достигли рубежа, к которому до сих пор ни одна машина не подходила. Был ли это правильный путь?
Экспоненциальный рост информационных технологий привел к изменению системы воззрений, сложившейся на протяжении веков. Начали появляться первые вычислительные алгоритмы, способные доказывать теоремы.
Противники компьютерных доказательств приводят два основных аргумента.
Во-первых, такие доказательства невозможно проверить, так как компьютерная программа содержит этапы, которые никакой математик никогда не сможет проконтролировать. Во-вторых, в процессе возможны ошибки из-за сбоев как в аппаратном, так и в программном обеспечении. В большинстве случаев эти ошибки случайны. Одним из способов предотвращения таких ошибок является использование различных программ на разных машинах (чтобы сравнить полученные результаты).
Но компьютеры могут работать только с кодами из единиц и нулей. Это накладывает некоторые ограничения, так как для чисел, которые не могут быть выражены в двоичной системе счисления, приходится использовать приближенные значения, что ведет к возможным ошибкам. В 1991 г. Дэвид Стаутмайер провел 18 экспериментов, доказав, что вычисления с помощью компьютерных программ могут дать неверные результаты.