Именно поэтому многие считают, что новые вычислительные методы исследований можно применять лишь в экспериментальной науке, а не в математике. Однако никто и не говорит, что в математике может быть использован лишь один метод.
Подсчитано, что у суперкомпьютера Cray на каждую тысячу часов работы приходится лишь одна ошибка.
«Традиционные» математические подходы тоже никогда не были свободны от ошибок. В ряде случаев неверные результаты считались правильными в течение многих
лет. Кроме того, в наши дни математика достигла такого высокого уровня разнообразия и сложности, что проверка доказательства теоремы может занять годы, или доказательство будет понятно в лучшем случае лишь нескольким специалистам.
Наконец, некоторые эксперты считают, что использование компьютера в качестве инструмента исследования и проверки теорем означает новое отношение к математике. Вполне разумно предположить, что гипотеза Римана в один прекрасный день может быть доказана с помощью компьютера. В любом случае, никто не ставит под сомнение правомерность того, что вычислительные методы используются для поиска и проверки простых чисел. В области вычислительной алгебры часто звучат такие термины, как детерминированный и вероятностный полиномиальные алгоритмы, которые совершенно непонятны для непосвященных. Хотя к нашей теме это не имеет прямого отношения, было бы полезно пояснить эти понятия.
Когда говорят о полиномиальном времени, имеют в виду время, необходимое компьютеру для выполнения некоего алгоритма. Предположим, что у нас есть входная переменная п. Если алгоритм использует полиномиальные выражения, например, n3 + 2n + 1, его называют полиномиальным алгоритмом (алгоритмом класса сложности Р). Если же выражение экспоненциальное, то говорят о неполиномиальном алгоритме (алгоритме класса сложности NP). В общих чертах идея состоит в том, что полиномиальные алгоритмы имеют приемлемое время работы, в отличие от неполиномиальных.
* * *
МАКСИМАЛЬНАЯ БЕЗОПАСНОСТЬ
Правительство США на своей территории и в Канаде допускает использование лишь определенных криптографических кодов. Также существует запрет на их продажу за пределами этих стран. Несанкционированный экспорт стандартов шифрования приравнивается к торговле оружием. Компании, производящие программы шифрования, хранят секретные коды в планшетах, оснащенных сложными устройствами безопасности. При взломе их содержимое превращается в бесформенную массу из-за контакта с кислородом. При попытке просканировать планшеты с помощью, например, рентгеновских лучей их содержимое преобразуется в нули.
* * *
Некоторые вычислительные задачи не могут быть решены с помощью детерминированного подхода — другими словами, с помощью процессов, выдающих уникальный и предполагаемый результат. Именно такими являются полиномиальные алгоритмы, работающие за полиномиальное время и выполняющие, например, операции сложения, умножения или решения систем уравнений. В большинстве случаев при использовании подходящих алгоритмов решение может быть найдено за разумное время. Задачи, которые могут быть решены таким образом, называются задачами класса сложности Р. С другой стороны, задачи класса сложности NP, для которых используются недетерминированные алгоритмы, решаются несколькими разными способами без гарантии получения одинакового результата.
Время, необходимое для решения такого рода проблем, намного больше чем для задач класса Р. Ясно, что любая проблема, которая допускает детерминированное решение за полиномиальное время, может быть также решена способом быстрой проверки. Другими словами, любая задача класса Р является также задачей класса NP. Однако на этом этапе нам следует уточнить понятие алгоритма.
Алгоритм можно сравнить с кулинарным рецептом. Он состоит из последовательности кристально ясных инструкций. Например, чтобы решить уравнение вида х — 2 = 8, можно использовать следующий алгоритм.
1. Отделить х (перенеся все члены, не содержащие х, в правую часть).
2. Выполнить сложение в правой части: 8 + 2 = 10.
3. Записать решение: х = 10.
Это задача класса Р, которую можно решить за полиномиальное время: она