Выбрать главу

Из-за своих дополнений к «Началам» Клавий прославился как «Евклид шестнадцатого века». Его работа была довольно радикальной, но он многое сделал в других областях. Он являлся активным сторонником григорианского календаря, и именно благодаря ему после четверга, 4 октября 1582 г. по юлианскому календарю, идет пятница, 15 октября 1582 г. по григорианскому календарю. Расчеты Клавия позволили перейти от одного календаря к другому, удалив 10 дней из истории человечества!

Клавий привел доказательство пятого постулата, снова использовав для этого сам пятый постулат: линия, равноудаленная от данной прямой линии, также является прямой. Несмотря на другие свои достижения, Клавий не достиг успеха в попытке исправить и дополнить великого мастера.

Преподаватель Оксфордского университета Джон Валлис (1616–1703) был одним из пионеров современной математики. Он ввел новую интерпретацию пятого постулата, отказавшись от идеи равноудаленности и использовав рассуждения с треугольниками. Валлис показал, что «для любого треугольника можно построить другой треугольник с теми же углами и пропорциональными сторонами». Однако и это утверждение также эквивалентно исходному постулату:

Все аргументы так или иначе сводились к утверждениям, эквивалентным пятому постулату, потому что сам подход был ошибочным: в доказательстве уже использовалось то, что они хотели доказать.

Четырехугольники Саккери

Казалось, ситуация зашла в тупик, но тут появился Джироламо Саккери. Итальянский математик воспользовался методом доказательства от противного, при котором сначала формулируют предположение, противоположное тому, что хотят доказать, а затем логически доказывают, что это предположение ведет к противоречию. Таким образом, Саккери подумал, что ему удалось доказать постулат, но потом он понял, что так и не получил убедительного противоречия.

Его работа неявно предполагает существование других геометрий, которые возникают именно из-за невозможности достижения противоречия, исходя из предположения о ложности пятого постулата. Сам не осознавая того, Саккери создал новую геометрию, в которой пятый постулат заменен противоположным ему утверждением.

Саккери начал с идеи Омара Хайяма и рассмотрел тот же четырехугольник ABCD, у которого стороны АВ и CD конгруэнтны, а углы при вершинах А и D прямые. Четырехугольники такого вида называются теперь четырехугольниками Саккери.

Чтобы доказать пятый постулат, Саккери показал, что углы при вершинах В и С прямые. В соответствии с пятым постулатом, угол В равен углу С. В этом случае существует три возможности.

1. Гипотеза о прямых углах: углы В и С являются прямыми.

* * *

ДЖИРОЛАМО САККЕРИ (1667–1733)

Саккери еще молодым человеком вступил в орден иезуитов и преподавал теологию в иезуитском колледже в Милане. Позднее он преподавал философию в Турине. Но его интересы этим не ограничивались. Работая преподавателем математики в университете Павии, он занимался пятым постулатом Евклида и представил результаты исследований в своем главном труде Euclides ab omni naevo vindicatus («Евклид, очищенный от всех пятен»).

* * *

2. Гипотеза о тупых углах: углы В и С являются тупыми, то есть их величина больше 90° и меньше 180°.

3. Гипотеза об острых углах: углы В и С являются острыми, то есть их величина больше 0° и меньше 90°.

Саккери показал, что пятый постулат эквивалентен гипотезе о прямых углах, а затем попытался доказать, что другие гипотезы приводят к противоречию. Если бы ему это удалось, то постулат был бы доказан. Рассматривая вторую гипотезу (случай тупых углов), он получил противоречие и отбросил эту возможность. Еще раньше он показал, что сумма четырех углов должна быть меньше или равна 360°. Но для гипотезы острых углов ему не удалось получить противоречия. Теперь-то мы точно знаем, что противоречия не существует, и гипотеза об острых углах является одной из основ неевклидовой геометрии. Спустя столетие Ламберт, о котором мы подробнее расскажем позже, также безуспешно попытался доказать постулат исходя из того, что углы А, В и D являются прямыми.

Исходя из гипотезы об острых углах, Саккери получил различные результаты неевклидовой геометрии. Например, он показал, что гипотезы о прямых, тупых и острых углах эквивалентны тому, что сумма внутренних углов треугольника равна, больше или меньше двух прямых углов соответственно. Он также доказал некоторые результаты, необычные для евклидовой геометрии. Вот один из них.