Таким образом, область I ограничена линиями тип, образующими угол (β, который меньше двух прямых углов (180°), как видно на предыдущем рисунке.
Угол β/2 = α называется углом параллельности. Обратите внимание, что α является острым углом (меньшим, чем прямой угол). Это важный факт, так как в евклидовой геометрии такие углы всегда прямые.
На рисунке из точки Р на прямую l опущен перпендикуляр, а расстояние от точки Р до прямой l обозначено буквой d. Мы видим, что угол ОС зависит от длины d (напомним, что мы рассматриваем не плоскую поверхность), так что
1) при уменьшении d α стремится к прямому углу (90°);
2) при увеличении d α стремится к 0.
Этот результат можно наглядно представить с помощью резиновой ленты. Точка Р является концом растянутой резинки, расположенной перпендикулярно прямой l, так что точка Р может двигаться вверх-вниз, увеличивая и уменьшая длину резинки, вместе с которой будут двигаться прямые, проходящие через точку Р. Таким образом, мы увидим, как будет меняться угол параллельности.
При этом существует постоянная величина, которую мы обозначим k, зависящая от единицы измерения длины d и выражаемая следующим образом:
Предыдущий результат можно получить по-другому. Когда значение d увеличивается, правая часть уравнения будет стремиться к 0, и поэтому значение tg (α/2) также стремится к 0, что означает, что α практически 0.
Аналогично, когда d очень мало, значение tg (α/2) — будет приближаться к 1, что означает, что , то есть α будет прямым углом, так как π/2 = 90°.
В евклидовой геометрии этот угол не меняется при изменении расстояния. В гиперболической геометрии, как мы видим, угол всегда зависит от величины d.
В евклидовой геометрии расстояние между параллельными прямыми на всем их протяжении всегда одно и то же. Как и следовало ожидать, в мире гиперболической геометрии ситуация оказывается несколько иной.
Рассмотрим прямую l и параллельную ей прямую s. Выберем точку Р на s, как на следующем рисунке:
При перемещении точки Р вправо мы видим, что расстояние от Р до прямой l уменьшается. Выражаясь математическим языком, это расстояние стремится к нулю.
Мы также можем сказать, что прямые l и s асимптотически сходятся справа.
Аналогично, если точка Р движется налево, мы видим, что расстояние от Р до прямой l увеличивается. В этом случае говорят, что прямые l и s расходятся. Поэтому, когда в гиперболической геометрии имеются прямые, расстояние между которыми остается постоянным, то такие прямые не могут быть параллельны. Иначе это противоречило бы пятому постулату гиперболической геометрии. Прямая, находящаяся на постоянном расстоянии от данной прямой, называется эквидистантой.
Теперь мы рассмотрим результаты, связанные с треугольниками, кругами и отношениями между площадью и длинами. Эти результаты включают теорему Пифагора, и мы увидим, как она работает в гиперболической геометрии на примере некоторых задач, знакомых нам со школы.
Треугольники
Формула для площади треугольника в евклидовой геометрии всегда одинакова для любого треугольника: s = (b·h/2) то есть площадь равна половине произведения основания треугольника на высоту. В основе этого выражения лежит тот факт, что сумма внутренних углов треугольника всегда равна 180°.
Но в гиперболической геометрии, как ни странно, площадь треугольника зависит от суммы его углов. Как мы уже говорили, в гиперболической геометрии сумма углов треугольника всегда меньше 180°. Следовательно, сумма углов в четырехугольнике также будет меньше 360°.