Выбрать главу
Сумма углов и сумма сторон сферического треугольника

Одним из результатов, о котором мы уже говорили, является тот факт, что сумма углов сферического треугольника больше 180°, или π радиан, и меньше 360° = 2π радиан. То есть

π A + В + С < 2π.

Таким образом, можно сказать, что сумма сторон сферического треугольника удовлетворяет неравенству:

+ bc < 2·π·R.

Площадь треугольника

Величина (А + В + С — 180°) называется сферическим избытком, так что площадь сферического треугольника S находится по следующей формуле:

где R — радиус сферы.

Следует отметить, что чем больше площадь треугольника, тем больше сумма его углов. Кроме того, чем больше площадь треугольника, тем больше сферический избыток, и именно поэтому больше значение А + В + С.

Длина окружности

В евклидовой геометрии имеется следующий результат: длина окружности радиуса r равна 2πr. В эллиптической геометрии этот результат выглядит следующим образом: длина окружности радиуса r всегда больше, чем 2πr.

* * *

ПЛОЩАДЬ СФЕРИЧЕСКОГО ТРЕУГОЛЬНИКА НА ПОВЕРХНОСТИ ЗЕМЛИ

Давайте решим следующую задачу: какова должна быть площадь сферического треугольника на поверхности Земли, чтобы сумма его углов была больше 180° хотя бы на 1°? По формуле для площади сферического треугольника имеем:

Мы хотим найти значение S, такое что

Отсюда получаем

Выражая и подставляя 6350 км вместо R, имеем

Следовательно, у любого треугольника на поверхности Земли, площадь которого равна или больше 703739,6319 км2, сумма углов будет превышать 180° по крайней мере на 1°.

* * *

Теоремы синусов и косинусов

В сферической геометрии теоремы синусов и косинусов выглядят следующим об разом:

Теорема косинусов также работает после так называемой круговой перестановки (замены а на Ь, b на с и с на а).

Теорема Пифагора

И снова теорема Пифагора из евклидовой геометрии имеет свой аналог в другом геометрическом пространстве. Но в сферической геометрии теорема Пифагора ведет себя несколько иначе. В этой геометрии она формулируется следующим образом: пусть R — радиус сферы, с — гипотенуза, а и — две другие стороны сферического треугольника, а угол С — прямой угол, тогда:

Для большей ясности это утверждение может быть выражено в словесной форме. И хотя оно совсем не напоминает оригинальную теорему Пифагора, мы сформулируем его в любом случае:

«В любом прямоугольном треугольнике на поверхности сферы радиуса R косинус отношения гипотенузы с к радиусу R равен произведению косинусов отношений других сторон к радиусу».

В следующей таблице сравниваются основные математические характеристики традиционной и сферической геометрий — самой простой версии эллиптической геометрии.

ЕВКЛИДОВА ГЕОМЕТРИЯ

• Прямая линия является кратчайшей линией между двумя точками.

• Прямые линии бесконечны. Расстояние между двумя точками не ограничено.

• Существует только одна прямая линия, соединяющая две точки.

• Существуют прямые без общих точек, и они называются параллельными линиями.

• Две перпендикулярные прямые образуют четыре прямых угла.

• Треугольник имеет не более одного прямого угла.

СФЕРИЧЕСКАЯ ГЕОМЕТРИЯ

• Геодезическая линия является кратчайшей линией между двумя точками.

• Геодезические линии имеют максимальную конечную длину, равную πR. Максимальное расстояние между двумя точками равно πR.

• Геодезическая линия будет единственной тогда и только тогда, когда две точки не являются диаметрально противоположными. В противном случае существует бесконечное число геодезических линий.