* * *
Теперь представьте себе не круг, а сферу, такую как Земля. Если ее разделить на две части от одного полюса к другому, то можно использовать угловые измерения так же, как и в круге, и, следовательно, можно определять положение точки по угловым значениям широты и долготы.
Углы измеряются на восток (направо) и на запад (налево) от нулевого меридиана до диаметрально противоположного ему антимеридиана. Таким образом, долгота имеет значения от 0° до 180°, то есть до половины от 360°, или, другими словами, 90° + 90°. Экватор и Гринвичский меридиан можно рассматривать в качестве осей координат.
Что касается широты, она измеряется от 0° до 90° с указанием Северного или Южного полушария.
* * *
ДВА КОНЦА ЗЕМЛИ
Нью-Йорк и Сидней не являются антиподами, то есть на поверхности планеты они не находятся в диаметрально противоположных точках, но, конечно, они очень далеки друг от друга. Тем не менее по их координатам широты и долготы это неочевидно.
* * *
Сфера Земли с меридианами и параллелями. Эти линии используются для определения точного положения точки на поверхности.
Три точки с разными координатами широты и долготы на двух проекциях Земли. На плоской проекции (вверху) мы получаем обычный треугольник, в то время как на сферической проекции (внизу) мы получаем сферический треугольник.
Традиционный глобус Земли, используемый сегодня во многих школьных классах, представляет собой сферу с сеткой координатных линий, представляющих меридианы и параллели планеты. Очень часто в классах также имеется карта мира с линиями, напоминающими декартовы координаты.
Вертикальные линии показывают долготу. Слева от начала координат — западная долгота, справа — восточная долгота.
Горизонтальные линии указывают широту; вверх от начала координат — северная широта, вниз — южная. На предыдущей странице изображен один и тот же регион мира на двух типах карт. На первом рисунке меридианы и параллели — прямые линии, а на втором они искривлены.
Как найти кратчайшее расстояние между Барселоной и Токио?
На карте мира мы видим, что Барселона находится в точке с координатами 2° восточной долготы и 41° северной широты, а Токио — около 140° восточной долготы и 36° северной широты. Рассмотрим сферический треугольник с вершинами А (Барселона), В (Токио) и D (Северный полюс).
Обозначим буквой d геодезическую линию, соединяющую Барселону и Токио. Длина d и будет минимальным расстоянием между двумя городами. Для вычисления этой длины мы используем теорему косинусов для сферических треугольников:
cos d = cos a · cos b + sin a · sin b · cos D.
Чтобы найти d, мы должны знать величины сторон а и b и угла D. Чтобы вычислить длину стороны сферического треугольника, возьмем экватор за горизонтальную ось и вычтем из 90° широту каждой точки. Для нахождения угла D мы поступаем аналогично, на этот раз беря в качестве оси координат Гринвичский меридиан:
а = 90°- 41° = 49°
Ь = 90–36° = 34°
D = 140°- 2° = 138°.
Подставляя эти значения в теорему косинусов и используя калькулятор, получим:
cos (d) = cos(49°)·cos(54°) + sin(49°)·sin(54°)·cos(138°) =
= 0,656059029·0,5877852523 + 0,7547095802·0,809016944·(-0,7431448255) =
= -0,06812225162.
Используя клавишу cos-1, мы найдем расстояние d: 93,90614266°.
Однако, было бы более полезно определить это расстояние в километрах. Учитывая, что радиус Земли составляет 6350 км, длина окружности большого круга на поверхности земного шара может быть вычислена по формуле:
2·π·R = 2·π·6350 = 39 898,23 км.
Таким образом, длина 39898,23 км соответствует полному кругу в 360°. Остается узнать, скольким километрам соответствует угол в 93,90614266°.
Обозначим это значение за х и посчитаем следующую пропорцию:
Выражая отсюда х, получим х = 10407,46911 км.