Выбрать главу

Эти примеры показывают, что формы геометрических фигур не являются универсальными, вечными и неизменными. Любая форма относительна, каким бы странным этот факт ни казался. Формы зависят от метрики — так называется тип используемого «расстояния». Другими словами, они зависят от подхода к данной задаче.

Тем не менее, расстояние такси вовсе не является курьезом. Оно имеет множество применений в городском планировании. Например, оно играет важную роль при планировании эффективной дорожной сети и удобного расположения государственных учреждений (больниц, школ, туристических достопримечательностей и т. д.).

Соединяющие улицы

Давайте представим, что в некотором городе приняли решение соединить между собой два городских округа. Эти районы называются А и В, а улицы в них образуют прямоугольные кварталы, как в реальном Эшампле в Барселоне. Для соединения двух округов было решено построить дорогу таким образом, чтобы выполнялось одно сложное условие: в любой точке этой дороги автомобиль должен находиться на одинаковом расстоянии от точек А и В. Как можно спроектировать такую дорогу?

В математических терминах этот вопрос можно сформулировать следующим образом: какие точки на плоскости равноудалены от точек А и В?

Как всегда, в евклидовой геометрии имеется простое решение. Если на плоскости XY точка А имеет координаты (0, 0), а точка В — (4, 2), то можно провести линию, перпендикулярную отрезку АВ и проходящую через его середину. Эта линия и будет состоять из точек Р, удовлетворяющих условию:

d(P, A) = d(P, B).

Но этот подход не работает в геометрии такси. Обратите внимание, что евклидово решение потребует снести большое количество зданий, чтобы построить такой идеальный маршрут.

Решение должно быть найдено в терминах геометрии такси. Нужно найти линию, все точки Р которой удовлетворяют условию dT(P, А) = dT(P, В). Тогда расстояние от любой точки этой линии до точки А будет равно расстоянию до точки В. Кроме того, это решение позволяет свести к минимуму количество сносимых зданий.

Глава 2

Евклидова геометрия

В живописи точка является наиболее важным элементом.

Василий Кандинский

Геометрия первоначально была наукой об измерениях. Греческие геометры умели измерять отрезки линий (как прямых, так и кривых), площадь поверхности, ограниченной линиями, и объемы фигур, ограниченных поверхностями. Однако глагол «измерять» вскоре принял более широкий смысл: «устанавливать отношения между геометрическими объектами». Появились геометрические формулировки, которые используются и сегодня: «прямая линия r параллельна прямой q», «отрезок АС в три раза длиннее отрезка АВ», «отношение периметра окружности к ее диаметру

есть число, которое не может быть выражено в виде дроби».

Для установления истинности таких отношений геометры древности разработали и довели до совершенства особую систему доказательств, которая стала основным методом математики. Система греческих геометров состояла в выводе важнейших результатов (теорем) из набора основополагающих аксиом с помощью «длинных цепочек рассуждений», как называл доказательства Декарт в своем трактате «Рассуждение о методе». Этот практически творческий подход является характерной чертой евклидовой геометрии.

«Начала» Евклида и пятый постулат

Как и в случае со многими другими выдающимися деятелями далекого прошлого, сведения о Евклиде крайне скудны. Ни дата, ни город его рождения точно не известны. Все имеющиеся сведения содержатся в толкованиях древних документов, упоминающих геометрию. Оттуда известно, что он жил до Архимеда, ок. 325–265 гг. до н. э., и был почти современником Птолемея (367–283 гг. до н. э.). Стиль его рассуждений указывает на то, что он учился в Афинах с другими учениками Платона. Достоверно известно, что Евклид жил в Александрии, где преподавал математику на протяжении более чем 20 лет. Именно там он основал знаменитую школу, с которой и связан расцвет его научной деятельности.