* * *
НИКОЛАЙ ИВАНОВИЧ ЛОБАЧЕВСКИЙ (1792–1856)
Отец неевклидовой геометрии был человеком скромным, очень хорошо воспитанным и серьезным, неутомимым работником, который посвятил свою жизнь работе в Казанском университете. После окончания физико-математического факультета родного университета он начал в нем преподавать и вскоре получил должность декана факультета, а затем стал ректором Казанского университета. Этот пост он занимал в течение 19 лет. Параллельно с занятиями математикой он добился исключительных результатов на этой должности. Он улучшал здания университета и строил новые, организовывал работу библиотеки (иногда лично сортируя книги), открыл лабораторию и новую клинику и привлек на работу лучших преподавателей и ученых. Кроме геометрии Лобачевский также интересовался другими областями математики, такими как тригонометрические ряды, теория вероятностей, механика и интегральное исчисление. Наиболее важной негеометрической его работой была «Алгебра, или Вычисление конечных».
Советская марка с портретом Лобачевского.
В 1822 г. с публикацией работы Гаусса «Исследования относительно кривых поверхностей» появилась новая ветвь геометрии — дифференциальная геометрия, в которой используется дифференциальное и интегральное исчисление для изучения кривых и поверхностей в трехмерном евклидовом пространстве. Сразу после открытия этого исчисления в работах Ньютона и Лейбница математики стали использовать этот мощный инструмент для анализа кривых, а впоследствии Эйлер и Монж начали применять его также для поверхностей.
Однако даже работа Гаусса не содержит систематического и исчерпывающего исследования поверхностей в трехмерном пространстве. Гаусс заинтересовался поверхностями, когда занимался задачами геодезии и картографии, еще в Ганновере работая над методом триангуляции, а также благодаря своим астрономическим исследованиям. В «Общих исследованиях о кривых поверхностях», изучая поверхности в геометрических пространствах, он открыл новый научный метод. Он первым начал рассматривать поверхности как объекты, которые могут быть описаны двумя координатами и хг называемыми локальными координатами. До Гаусса поверхности считались всего лишь границами твердых тел. В то время как обычная геометрия изучала объекты на плоскости и в пространстве в их целостности, новая дифференциальная геометрия концентрировалась на отдельных локальных свойствах кривых и поверхностей.
Поверхности в пространстве — это геометрические объекты, которые могут быть локально описаны двумя координатами U и V, называемыми локальными координатами. Локальная карта (Т) является телескопом, через который математик наблюдает (получается двумерное изображение) конкретную область изучаемого объекта.
В упомянутой работе Гаусс ввел понятие ориентации поверхности и связанного с ориентацией поля нормальных векторов, содержащего векторы, перпендикулярные к поверхности в каждой ее точке, что стало основным инструментом для измерения кривизны поверхности. Эти инструменты позволили определить два вида кривизны поверхности, известные сегодня как кривизна Гаусса К и средняя кривизна Н. Гаусс показал, что, вопреки определению, кривизна К зависит только от внутренней геометрии поверхности, доказав основную теорему теории поверхностей, так называемую Theorema Egregium. Он также определил другие основные элементы внутренней геометрии, в частности, геодезические линии как кратчайшее расстояние между двумя точками на поверхности. Им же были получены интересные результаты, следующие из внутренней геометрии, такие как отношение между углами геодезического треугольника и его кривизной.
Формула показывает, что разность между 180° (или π радиан) и суммой углов геодезического треугольника зависит от кривизны Гаусса.
Если взять полоску бумаги и соединить ее два конца, то получится лента с двумя поверхностями — внешней и внутренней, то есть двухсторонняя. Но если мы развернем один конец бумаги при склеивании, то получится лист Мёбиуса, который является односторонней поверхностью. Чтобы проверить это, достаточно провести карандашом линию по ленте и убедиться, что линия вернется в начало, пройдя по всей ленте. Эта лента имеет только одну сторону.
* * *
ИОГАНН КАРЛ ФРИДРИХ ГАУСС (1777–1855)
Гаусс, несомненно, один из самых выдающихся математиков всех времен. Еще ребенком он показал исключительный талант к математике, поэтому, несмотря на скромное происхождение юного гения, его обучение было профинансировано герцогом Вильгельмом Фердинандом. Так, в 1795 г. Гаусс начал изучать математику в университете Гёттингена. В возрасте 19 лет он решил одну из классических задач геометрии, показав, что правильный 17-сторонний многоугольник можно построить с помощью линейки и циркуля. Это была первая запись в его знаменитом научном дневнике, в который он заносил короткие заметки о своих самых важных открытиях. В 21 год он написал свой важнейший труд «Арифметические исследования». Гаусс стал известен всей Европе, когда с помощью вычислений определил орбиту астероида Цереры, используя свой метод наименьших квадратов. В 1807 г. он возглавил кафедру астрономии в Гёттингенском университете и был назначен директором обсерватории. Он сделал открытия во многих областях математики, в том числе в алгебре, теории чисел, дифференциальной геометрии, неевклидовой геометрии, математическом анализе, геодезии, астрономии, теории ошибок, а также в области физики, магнетизма, оптики и электричества. После его смерти король Ганновера Георг V назвал его принцем математики и распорядился выпустить памятную медаль в честь Гаусса.
Карикатура на Гаусса авторства Энрике Моренте.
Внутренние и внешние геометрии
В чем различие между внутренней и внешней геометрией поверхности? Внутренняя геометрия — это геометрия самой поверхности, которую могли бы описать существа, живущие на этой поверхности. Гаусс в письмах к своим коллегам упоминал гипотетическую моль, живущую в двумерном пространстве. Theorema Egregium, основная теорема теории поверхностей, утверждает, что гауссова кривизна определяется геометрией, которая присуща самой поверхности. Эта величина характеризует внутреннюю кривизну поверхности. Внешняя же геометрия отражает связь между поверхностью и внешним трехмерным пространством и определяет среднюю кривизну линий на поверхности.
Локально внутренние геометрии плоскости и цилиндра одинаковы, так как обе имеют гауссову кривизну, равную нулю. Если взять лист бумаги и соединить два противоположных конца, то получится цилиндр. Этот небольшой эксперимент изменяет геометрию (метрику) поверхности. Обе поверхности внутренне плоские, и существа, живущие на них, не смогли бы отличить одну от другой, если бы они не могли посмотреть на них снаружи. Вместе с этим в трехмерном пространстве плоскость не искривлена (ее средняя кривизна равна нулю), а цилиндр, средняя кривизна которого является положительным постоянным числом, искривлен.